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Abstract

Although recent provable methods have been developed to
compute preimage bounds for neural networks, their scalabil-
ity is fundamentally limited by the #P-hardness of the prob-
lem. In this work, we adopt a novel probabilistic perspective,
aiming to deliver solutions with high-confidence guarantees
and bounded error. To this end, we investigate the poten-
tial of bootstrap-based and randomized approaches that are
capable of capturing complex patterns in high-dimensional
spaces, including input regions where a given output prop-
erty holds. In detail, we introduce Random Forest Property
Verifier (RE-ProVe), a method that exploits an ensemble of
randomized decision trees to generate candidate input regions
satisfying a desired output property and refines them through
active resampling. Our theoretical derivations offer formal
statistical guarantees on region purity and global coverage,
providing a practical, scalable solution for computing com-
pact preimage approximations in cases where exact solvers
fail to scale.

Code — https://github.com/lmarza/Prob VerNet

Introduction

The ability of Deep neural networks (DNNs) to learn com-
plex patterns from vast amounts of data has allowed them
to tackle challenging tasks in several domains (O’Shea and
Nash 2015; Marzari et al. 2021, 2025). However, as DNNs
become more powerful and pervasive, safety concerns have
become increasingly prominent. In particular, DNNs are of-
ten considered “’black-box” systems, meaning their internal
representation is not fully transparent. A crucial weakness
of DNN:s is the vulnerability to adversarial attacks (Szegedy
et al. 2013; Amir et al. 2023), wherein small, imperceptible
modifications to input data can lead to wrong and potentially
catastrophic decisions when deployed.

On top of standard DNN-VERIFICATION (Liu et al. 2021;
Zhang et al. 2018; Xu et al. 2021; Wang et al. 2021; Wei
et al. 2025), which aims to establish provable guarantees
that the network adheres to specific formal specifications,
recent works (Marzari et al. 2023; Kotha et al. 2023; Zhang,
Wang, and Kwiatkowska 2024), based on seminal results
of (Dathathri, Gao, and Murray 2019; Matoba and Fleuret
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2020), have formalized the quantitative version of the ver-
ification problem, namely identifying the subset of a de-
sired input region where a DNN produces (or not) a de-
sired output. This problem is formally defined as ALLDNN-
VERIFICATION or provable DNNs’ preimage bound com-
putation.! Computing the preimage bound provides a more
informative and fine-grained characterization of the model’s
behavior, enabling the quantification and localization of the
full region of inputs that lead to unsafe outputs, rather than
relying on the mere existence of (possibly) isolated coun-
terexamples. This information can be used to guide model
debugging, improve training procedures through targeted
data augmentation, and inform safe recovery strategies by
identifying and avoiding risky regions during deployment.
In this context, producing compact representations of such
unsafe regions is crucial to enhance explainability and sup-
port safer fallback mechanisms, as compact regions are eas-
ier to interpret.

However, as for most of the classical enumeration prob-
lems (e.g., ALLSAT (Valiant 1979)), the exact enumera-
tion of neural network preimage bounds is computationally
prohibitive, as the problem has been shown to be #P-hard
(Marzari et al. 2023). To circumvent such a problem, recent
efforts (Zhang, Wang, and Kwiatkowska 2024; Zhang et al.
2025) have explored the combination of sound under- and
over-approximations to approximate the preimage bounds of
aneural network with a set of polytopes as compact as possi-
ble. Nonetheless, these solutions still face significant scala-
bility issues due to the reliance on a provably sound solution.
We argue that the #P-hardness of the problem and its in-
tractability necessitate novel probabilistic solutions that bal-
ance computational feasibility with accuracy. Specifically,
in this work, we investigate an approximate variant of the
ALLDNN-VERIFICATION problem which is probabilisti-
cally solvable, that is, we devise an efficient algorithm that
delivers an approximate and compact solution with high-
confidence guarantees and bounded error. In a similar vein,
(Marzari et al. 2024) proposes a probabilistic enumeration
of preimage bounds. However, their focus lies primarily on

"We note that Marzari et al. (2023) and Kotha et al. (2023) inde-
pendently and contemporaneously addressed the same underlying
problem under different names. In this work, we use ALLDNN-
VERIFICATION problem or bounding the DNN’s preimage inter-
changeably.



maximizing coverage, rather than on ensuring compactness
of the solution. In fact, their reliance on a single decision
tree to provide the solution often results in the generation
of a large number of polytopes, which in complex scenar-
ios can even exhaust memory resources, producing highly
fragmented representations that are difficult to interpret and
impractical for downstream tasks such as safe recovery or
explanation. In contrast, in this work, we explore the poten-
tial of bootstrap-based and randomized approaches that are
capable of capturing complex patterns in high-dimensional
spaces, including input regions where a given output prop-
erty holds. Our probabilistic bounds are from the realm
of statistical prediction on tolerance limits (Wilks 1942),
which enable high-confidence guarantees on region purity
and global coverage.

Specifically, we present Random Forest-Property Verifier
(RF-ProVe), anovel probabilistic approach based on a ran-
dom forest-inspired classifier. In detail, we exploit an en-
semble of randomized decision trees structurally similar to a
random forest, but without relying on the traditional major-
ity voting scheme for classification (Breiman 2001).> This
choice is motivated by the goal of representing the preim-
age bounds of a neural network as axis-aligned boxes. Al-
ternative representations, such as unions of halfspaces, are
computationally more complex and often less interpretable
(Blumer et al. 1989). Although random forests implicitly
partition the input space into axis-aligned regions, they are
not represented in an explicit way. To address this, we extract
axis-aligned boxes directly from the decision paths leading
to the leaves of the trees. However, while these leaf regions
may appear pure (e.g., according to the Gini index), their re-
liability could be compromised by limited training data. To
mitigate this, we employ a filtering phase based on an ac-
tive resampling strategy that validates the purity of each re-
gion. Crucially, our probabilistic guarantees, based on Wilks
(1942) results, allow us to formally determine the number of
resampling points needed during this filtering phase. This
enables us to return a final set of regions for which we can
provide high-confidence guarantees on both their individual
purity and the overall coverage of the preimage.

Our empirical evaluation on standard verification bench-
marks demonstrates that RE-ProVe provides a valuable
probabilistic framework for challenging instances that are
difficult to verify with exact or provable solvers, pro-
ducing compact solutions with fewer polytopes compared
to existing approaches for the (approximate) ALLDNN-
VERIFICATION problem.

In summary, the contributions of this paper are:

* We present RE-ProVe, a random forest-based method
that combines passive learning with an active resampling
strategy to efficiently approximate unions of axis-aligned
boxes representing compact neural network preimages.

* We develop probabilistic bounds based on Wilks (1942)
statistical tolerance limits, providing high-confidence as-
surances on the purity and coverage of the extracted input

2Throughout the paper, we slightly abuse notation by referring
to this ensemble as a random forest, even though it does not employ
majority voting.

regions, guaranteeing a scalable and practical approxi-
mate solution to the (#P-hard) exact verification problem.

Preliminaries and Related Work

In this section, we provide the reader with all the necessary
basic definitions and notation on ALLDNN-VERIFICATION
to easily follow the paper. Moreover, we discuss related
work on the problem we aim to address.

Consider a deep neural network f : RY — R and a
safety property P = (X, )) to be verified. In detail, a safety
property encodes an input-output relationships for f and it
is composed of a precondition on the input X C R, that
identifies a portion of the input space where we want a spe-
cific postcondition ) to be satisfied on the output of f. With-
out loss of generality, in the following, we assume that the
DNNs we verify have a single output node, i.e., performing a
binary classification. One can simply enforce this condition
for networks that do not satisfy this assumption by adding
one layer and encoding the requirements of ) in a single
output node as a margin between logits, which is positive if
only if the property is respected (Liu et al. 2021; Wang et al.
2021).

ALLDNN- Verification or DNN’s Preimages
Bounds Computation

The ALLDNN-VERIFICATION problem (Marzari et al.
2023), also referred to as exact preimage bounds of a neu-
ral network (Matoba and Fleuret 2020; Kotha et al. 2023;
Zhang, Wang, and Kwiatkowska 2024), asks for the subset
of points in the input space X that a given function f maps
to a given subset ) of output values, i.e., the pre-image of )
with respect to f.

Definition 1 (AIIDNN-Verification Problem).
Input: A tuple T = (f, X, ).

Output: I'(T) = {:c X | f(z)e y}.

For the sake of simplifying the presentation, we focus
on a binary classification task, and we assume that f is
the boolean function obtained by thresholding the single
output of a DNN, i.e., such that f(x) = 1 iff the out-
put of the DNN is > 0.5, hence we have ) = {1} and
N(T)={zeX|f(x) =1}

One possible approach to solve this challenge in an exact
fashion, e.g., discovering the set of polytopes that exactly

Split W
e W

110,13, 0,1]) \ /

\[€

\I\

[10,049], [0,1]) (2, ) 105,11, [0,1]] )

)
10, 0.49], [0,0.49]] (€3] ) [[0,0.49], [0.5,1]]

110, 0.241,105,17) [10.25,0.49], 0.5, 1] %

Enumeration result

Figure 1: Illustrative overview of ALLDNN-VERIFICATION
problem.



cover the volume of I'(7), Vol(T'(T)), is to leverage the
branch-and-bound (BaB) (Bunel et al. 2018) process com-
monly used in verification and recursively record which re-
gions are (or are not) correctly mapped into ), as illustrated
in Fig. 1. However, as shown in (Marzari et al. 2023), simi-
larly to standard verification, the number of splits either on
the input or on the network’s non-linearities required in the
worst case can grow exponentially, since the problem is #P-
hard. Recent progress has been made through linear relax-
ation techniques (Zhang et al. 2018; Xu et al. 2021; Wang
etal. 2021; Xu et al. 2020), which over-approximate the net-
work’s non-linear behavior and enable backward analysis
to compute conservative estimates of the preimage. How-
ever, approaches like (Kotha et al. 2023) rely on sound
over-approximations and still face scalability limitations,
making them unsuitable for quantitative verification. To ad-
dress such an issue, novel solutions have been proposed in
(Zhang, Wang, and Kwiatkowska 2024; Zhang et al. 2025;
Bjorklund, Zaitsev, and Kwiatkowska 2025) for the approx-
imate version of the problem:

Definition 2 (Approximate AIIDNN-Verification).
Input: 7 = (f,X,Y),c € (0,1].
Output: a set B = {b1,...,by} of disjoint polytopes

Vol(lJ. b;
such that | J; b; C I'(T) and % > c

In this setting, the input includes the tuple 7 and a de-
sired coverage ratio (c) of the volume of the preimage set
(7). Since computing this volume in an exact fashion
is computationally prohibitive, typically an estimation is
computed, for example, using the Monte Carlo method ob-
taining Vol(T'(T)) = Vol(X) x %Zle 1f(z,)=1 Where
Z1,...,2 are sampled from the input domain X, and
14(z,)=1 indicates whether each sample is mapped to the
target set )) encoded in 7. The goal then is to construct a set
B of disjoint polytopes (e.g., axis-aligned hyperrectangles)
that under-approximate I'(7") while covering at least a frac-
tion ¢ € (0, 1] of the estimated volume Vol(T'(T)). Specif-
ically, (Zhang, Wang, and Kwiatkowska 2024; Bjorklund,
Zaitsev, and Kwiatkowska 2025; Zhang et al. 2025) extend
the work of (Kotha et al. 2023) by introducing a novel com-
bination of sound under- and over-approximation strategies
based on neural network linearization, effectively guiding
the divide-and-conquer procedure for estimating the preim-
age bounds set. Nonetheless, these approaches are deter-
ministic and sound, but due to the absence of a theoretical
bound, to guarantee a desired approximation, the algorithm
needs to empirically verify it at run time by estimating the
coverage via sampling, which can still lead to scalability is-
sues, as shown also in our experiments.

In this work, we focus on a novel probabilistic relaxation
of the problem, where the solution is allowed to (possibly)
include some incorrect input points but guaranteeing that
with confidence at least 1 — § the volume of the incorrect
points is bounded to at most an e-fraction of the returned so-
lution, and, moreover, this covers at least a desired portion
of the exact preimage set.

Definition 3 (Probabilistic Approximate AIIDNN-Verifica-
tion).

Input: 7,c € (0,1] and €,6 € (0,1).
Output: A set B = {b1,...,bn} of polytopes such that,
with probability at least 1 — 0,
Vol(T(T) N Y, b:)
Vol(D(T))

> ¢ (coverage)

and

Vol({f(z) ¢ YV |z €U, bi})
VOZ({Ui bl})

In this vein, (Marzari et al. 2024) employs a sampling-
based approach to generate probabilistically sound reach-
able sets and designs efficient heuristics to support the
BaB verification process, ultimately collecting a set of axis-
aligned hyperrectangles. However, as noted earlier, their re-
liance on a single decision tree often results in highly frag-
mented representations of the preimage bounds and, in the
worst-case scenarios, can lead to memory exhaustion. In this
work, we use both approaches, namely the sound under-
approximation provided by (Zhang et al. 2025) and the prob-
abilistic one provided by (Marzari et al. 2024), as baselines
for our empirical evaluation.

<e (error).

RF-ProVe: a Novel Probabilistic Approach

While recent approximate solutions for ALLDNN-
VERIFICATION have made significant progress in efficiently
addressing the problem, they often face trade-offs between
scalability and provable coverage guarantees. To address
this, we propose RF-ProVe, a novel probabilistic random
forest learning-inspired method specifically tailored for the
probabilistic ALLDNN-VERIFICATION problem.

Our key idea is to leverage the potential of bootstrap
and randomized-based approaches, which are well-suited
for capturing complex patterns in high-dimensional spaces.
Fig.2 illustrates the overall problem and our proposed ap-
proach. Given a target output property ), our objective is
to identify the corresponding region(s) in the input space,
denoted as X, that the neural network maps into ). Since
the location of such input regions is not known a priori, we
propose to sample labeled examples from the original input
space X’ and use them to guide the construction of a collec-
tion of decision trees. In detail, these trees are used to parti-
tion X into subregions up to a fixed depth D, which inher-
ently defines a user-defined precision parameter £ = 277,

X <X
O
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(M = (X} B = {0y, by, 13}

Figure 2: Explanatory image of the solution returned by our
REF-ProVe.



Algorithm 1: RF-ProVe

1: Input: 7 = (f, X, ), T # decision trees, D maximum depth,
R leaf purity desired, § confidence error, m # training exam-
ples, k testing examples, c desired coverage.

2: Output: B set of regions (hyperrectangles) satisfying ), es-
timated coverage reached.

: B+ 0

3

4: S+ GetExamples(f,m,X,))
5: rf + RandomForest(S, T, D)
6
7
8

: for tree in rf.trees do
B + GetPurePositiveLeaves(tree, ))

_ In(9)
= (R
9: > filtering phase.
10:  for bin B do
11: if SamplesInside(b) > n then
12: B+~ BUDWb
13: else
14: S’ + GetExamples(f,n,b,))
15: if f(z;) =1V z; € S then
16: B+~ BUD

17: B <+ RemoveDuplicateBoxes(B)

18:  coverage, k < EstimateCoverage(B, k)
19:  if coverage > c then

20: break

21: return I3, coverage

Consequently, our goal becomes identifying, with high con-
fidence and bounded error, a collection B of £-bounded axis-
aligned boxes that approximate, as tightly as possible, the
neural network preimage of ). We highlight that the dis-
cretization step does not compromise the soundness of the
procedure, as the input space can be assumed to be dis-
cretized up to the resolution allowed by machine precision.
Moreover, if a region cannot be resolved to the required &-
precision, it is excluded from the returned set, which pre-
serves the correctness of the final result. In fact, in the worst
case, this may lead to a conservative approximation, i.e.,
a looser under-approximation of the true preimage bounds.
Importantly, our method leverages statistical prediction via
tolerance limits (Wilks 1942) to derive novel theoretical
guarantees for the use of randomized ensemble learners such
as random forests on both the error within individual regions
and the overall coverage of the returned set of boxes.

Random Forest Classifier The first component of our
novel probabilistic approach is a random forest-inspired
classifier (Breiman 2001). Given a labeled dataset S =
{(zs,y:)}™,, where z; € RN and y; € {0,1}, we train a
random forest with 7" (fixed) decision trees (lines 4-5). Each
tree creates a partition of the input space into axis-aligned
boxes, corresponding to its leaf nodes up to a maximum pre-
defined depth D to be reached in each tree. We use the Gini
criterion to maximize the purity of leaves (i.e., maximizing
the probability of having leaves containing only positive or
non-positive examples from S). Hence, after the training of
the classifier, we collect all pure positive leaves (boxes con-
taining only positive examples in S) across the T trees and
store them in B (lines 6-7).

Active Resampling Strategy Each box in the set B, de-
noted b; C RY, is an axis-aligned hyperrectangle represent-
ing a candidate preimage region in the input space. These
boxes are initially extracted from leaves of decision trees in
the random forest that appear pure with respect to the target
output property ), based on the Gini. However, this criterion
may overestimate the true purity of a region, especially when
leaves contain only a few training samples. As a result, a
region may appear purely positive due to sampling bias, de-
spite containing unobserved non-positive points. To mitigate
this issue and obtain stronger probabilistic guarantees, we
introduce an active resampling strategy (lines 8—19). Specifi-

cally, we compute the number of positive samples n = 11511((;))

derived from our theoretical analysis (detailed in the next
paragraph), that each candidate box b; should contain in or-
der to be stored in the returned solution. Hence, we first ver-
ify whether a positive leaf, i.e., a b;, already contains at least
n such samples; if it does, we include b; in 5. Otherwise, we
uniformly sample n new inputs from b;, label them using the
neural network f, and collect the results in a set S’. If all in-
puts z; € S’ satisfy f(x;) = 1, then b; is added to B; other-
wise, it is discarded. As we will show in the next paragraph,
this procedure guarantees that, with probability at least 1—4,
each accepted box b; € B contains at least a fraction R of
its volume classified as positive. The boxes in B may par-
tially overlap, as only full containment is eliminated by the
filtering step (line 20). Notwithstanding the theoretical guar-
antee on the achieved coverage (Theorem 4), since this, in
practice, may speed up the convergence, we also estimate
the volume of the coverage of the current solution using a
Monte Carlo estimation as in (Zhang et al. 2025) (line 21).

Specifically, we count how many new examples in a fresh
test set of k£ samples fall within at least one of the collected
boxes in B, i.e., satisfying f(x) = 1. This empirical esti-
mate serves as a proxy for the true volume of the positive
part of the preimage under construction. If the estimated vol-
ume reached the desired coverage ratio, we stop the loop and
return the solution B and the corresponding coverage; other-
wise, we proceed (lines 22-26).

Theoretical Guarantees In this part, we discuss the theo-
retical guarantees underlying our RE—-ProVe approach. To
this end, we begin by revisiting the key result on statistical
prediction of tolerance limits (Wilks 1942), adapting it to
our specific setting.

Lemma 1 (Wilks 1942)). Fix a function g : R? — R. For
any R € (0,1) and integer n, given a sample X1 of n val-
ues from a (continuous) set X C R? the probability that
for at least a fraction R of the values in a further possi-
bly infinite sequence of samples x from X the value of g(x)
is not smaller (respectively larger) than the minimum value
mingex, g(x) (resp. maximum value max,cx, g(z)) of g
estimated with the first n samples is at least equal to 1 — 9,
where § is the value satisfying the following equation

1

1—(5:n-/x"_1dﬂc:(1—R”) (1)
R

Corollary 2. Let g: RN — [0,1] be a real-valued function

and let X C RY be a region of interest. Let f be the function



mapping points from RN to {0,1} defined by f(x) = 1 iff
g(x) >1/2. Fix6,R € (0,1) and let n > 1n5
Draw n iid. samples x1,...,x, from X Let p =

VOl({m‘e/)o(ll({\S?)zl)}) , be the true fraction of points in X which

are positive for f. If foreachi =1,...,
1 then

n we have f(x;) =

Pr[p < R] < 4.

Equivalently, with probability at least 1 — § the region X
has at least a fraction p > R of positive points for f.

Importantly, Lemma 1 and Corollary 2 do not require
any knowledge of the probability distribution governing the
function of interest and thus also apply to general DNNs.

Definition 4 (£-bounded hyperrectangle). A rectilinear &-
bounded hyperrectangle is defined as the cartesian product
of intervals of size at least £. Moreover, for & > 0, we say
that a rectilinear hyperrectangle v = x;[{;, u;] is £-aligned
if for each i, both extremes {; and u; are multiples of €.

Lemma 3 (Positive Samples in b)), Let X € RY be a re-
gion of interest. Fix §, R,§ € (0,1) and let n = % be the
sample size sufficient to guarantee the bound in Lemma 2.
Let Vol = &N be the volume of a hyperrectangle where

each side is of size £&. Fix a > 1 and let m > 7‘706;5,

w=m-Volg. and P = exp(—#). Consider a hy-
perrectangle b&) C XN of volume Vol¢. Then, the prob-
ability that among m points independently and uniformly
sampled from the input space X less than n points are from
bé is < P_..

Proof. For i = 1,...,m, let X; be the indicator random
variable of the event that the ¢th point is from b€ Then, we
have E[X;] = Vole and = mE[X;] = E[}_; X;]. Then,
the desired result is a direct consequence of the Chernoff
bound (Mitzenmacher and Upfal 2017). O

Theorem 4 (Coverage Guarantees of RE—ProVe). Let X €
RY be a region of interest. Let B = {by, ..., by} be the col-
lection of disjoint hyperrectangles containing all and only
the input positive points of the neural network for X, i.e.,
B = U;b; = f~1(1), where f is the function computed by
the neural network. Assume that for each j = 1,... k, it
holds that b; is k&-bounded, for some k > 3, hence, in par-
ticular, we have Vol(bj) > kNVole. Let B* = U; bj be the

total exact preimage bound.

Consider a random forest with T' random trees trained
on m samples, with m, satisfying the bound of Lemma 3.
Let B4 = {b{,b3', ..., b2}, be the set of (possibly over-
lapping) hyperrectangles that estimate the preimage out-
put bounds computed by RF-ProVe. Then, we have that
(52)NVol(B*) < Vol(BA N B*) and Vol(B* N B*) >
R Vol(B?). In particular, the fraction of incorrect points
(false positives) among the output boxes satisfies: Vol (B4 \
B*) < (1 - R) Vol(B4).

Proof. Recall the definitions and the notation of Lemma 3.
For the sake of simplifying the argument, We will use the
following lemma from (Marzari et al. 2024), rephrased in
the context of our present setting.

Lemma 5. (Marzari et al. 2024) Fix a real number & > 0
and an integer k > 3. For any v > k& and any y-bounded
rectilinear hyperrectangle r C RY | there is an &-aligned
rectilinear hyperrectangle &) such that: (i) r®) C r; and

(ii) Vol (r©) > (%)N Vol(r).

By applying this lemma to each hyperrectangle b; we ob-
tain a collection of rectilinear £-bounded and £-aligned hy-
perrectangles by, ..., by, such that for each j = 1,... k,
we have b; C b;, and Vol(b;) > (52)NVol(b;). Let
B = U ; I;j. For each j and each &-aligned hyperrectangle

b of volume ¢ contained in I;j we have that the proba-
bility that for each tree the training set used for building the
forest T' contains less than n points sampled from b(¢) is at
most PT. Let P, 5 be the probability that for some j € [k]
there is an £-aligned hyperrectangle of volume ¢V included
in Ej such that in the training set of each tree, less than n
samples are from b . Then, by the union bound, we have

P < Vzl,s"f) PT. Hence, with probability > 1 — P_ 4,

for every ¢-aligned hyperrectangle b(¢) of volume &V con-
tained in B there is at least one tree ¢ whose training set
contains at least n points from ). Since we are assum-
ing that our algorithm uses £-aligned splits, in each tree, the
points from b(&) will all be assigned the same leaf ¢. Let by
be the hyperrectangle associated to £. Since the tree is built
so that leaves are pure, the leaf £ and hence all the points in
by are classified as positive. Moreover, since b, contains > n
samples, in the output of the algorithm, there is a hyperrect-
angle containing by, i.e., either b, itself or some hyperrect-
angle that completely contains it. Since this holds simulta-
neously for every 5 aligned hyperrectangle b) of volume
&N contained in B it follows that B4 N B* D B, whence
Vol(BANB*) > Vol(B) > (52)NVol(B*), which proves
the first inequality in the statement of the theorem.

For the right inequality, we note that from b, we have
sampled > n points all testing positive. Hence, by Corol-
lary 2 with probability at least 1 — 4, at least a fraction R
of b, contains only positive points, i.e, it is part of the pos-
itive preimage. Considering all the boxes returned, we get
Vol(BANB*) > RY., Vol(b{*) = RVol(B*) from which
directly follows Vol(B4 \ B*) = Vol(B*) — Vol(B4 N
B*) < (1 — R)Vol(B%), concluding the proof. O

These theoretical results show that the ensemble of posi-
tive leaves produced by RE—-ProVe has strong probabilistic
guarantees on both purity and coverage. Importantly, since
RF-ProVe aggregates the positively classified regions from
all T trees, the total covered region B can only grow larger
than in the single-tree case. In practice, it is often signif-
icantly higher, thanks to the complementary contributions
from multiple trees, a phenomenon clearly confirmed by our
empirical evaluation.

Empirical Evaluation

In this section, we investigate whether our new random-
forest-inspired method, RF-ProVe, can generate more



compact solutions and better scale with both the input di-
mensionality and the encoding constraints of the problem.
We begin our empirical evaluation by analyzing how to set
the hyperparameters of RE-ProVe to ensure probabilistic
guarantees on both the confidence and the purity of the col-
lected regions.

How to select the hyperparameters? In RF-ProVe,
two main hyperparameters guide performance and guaran-
tees: the training set size m, and the total number of resam-
pling points n used to validate leaf purity. While there is
no closed-form rule for selecting m, as it depends on input
dimension, and desired property to verify, we empirically
found that using m = 20000 uniformly sampled examples
provides a sufficiently dense coverage of the input space to
populate the leaf regions of the decision trees across various
depths. It also ensures that each tree receives a diverse sub-
set of examples via bootstrapping, preserving both region
purity and ensemble diversity. Larger values of m yield di-
minishing returns while increasing training costs. The num-
ber of total resampling points n is derived from Theorem 4
and depends on the confidence level 1 — ¢, the minimum re-
quired purity R, and the maximum number of candidate re-
gions |B|maz, which is dictated by the forest structure. For
trees of depth D, each can produce up to 2°~! pure positive
leaves, so a forest with T trees yields |B|yar = T - 2071,
Fig. 3 (top) shows that even for D = 11, achieving up to
1024 boxes, the total needed resamples stay under 1.5M for
0 = 0.001 and R = 0.995, ensuring a very efficient so-
lution. Crucially, rather than relying on deep trees that risk
overfitting, we favor many shallow ones to enhance gener-
alization via randomized partitions. Fig. 3 (bottom) shows
that even for a fixed extreme maximum number of boxes
(e.g., 32000), using depths D € [5, 7] allows for forests with
500-2000 trees. We adopt D = 5 in all experiments, offer-
ing a scalable and expressive partitioning of the input space.
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Figure 3: Correlation samples complexity, number of trees,
and depth decision trees.

Verification experiments We compare RF-ProVe
against the Exact (Matoba and Fleuret 2020) solution, prov-
able sound PREMAP (Zhang et al. 2025), as well as the
probabilistic approach e-ProVe (Marzari et al. 2024). All
these approaches compute the preimage using unions of
axis-aligned hyperrectangles, making them directly com-
parable in both representation and output format. In our
evaluation, we consider standard verification benchmarks
used in (Zhang et al. 2025), such as the aircraft collision
avoidance system (VCAS) from (Julian and Kochenderfer
2019), and reinforcement learning (RL) tasks, such as Cart-
pole, Lunarlander, and Dubinsrejoin.3 Notably, we focus
on structured, verification-relevant domains (e.g., Dubinsre-
Jjoin) where compact preimage bounds are interpretable and
actionable. Image datasets like MNIST or CIFAR lack such
semantics and are less meaningful for safety analysis. Since
methods like PREMAP and e-ProVe already struggle with
Dubinsrejoin, higher-dimensional image inputs would add
stress without offering additional insight. To evaluate the
quality of the solutions produced by the tested methods, we
follow the approach proposed in (Zhang et al. 2025), using
for all approximate methods the same number of samples
(10k) to estimate the coverage, and define a target cover-
age ratio for each task. Given the stochastic nature of the
RF-ProVe, results Tab. 1 including the number of poly-
topes (# Poly), the achieved coverage, the percentage of im-
purity (for probabilistic methods), and the runtime across the
tested models, report the average result over 3 random ini-
tializations. Moreover, we set a desired confidence in the re-
sultof 1 —¢6 > 99.9% (i.e, 6 = 0.001) and a maximum error
in the final solution of 1 — R < 0.005 (i.e., R = 0.995).
Our goal is to compute the most compact representation of
the preimage region, i.e., using the fewest number of poly-
topes—while achieving a target level of coverage and en-
suring zero, or statistically bounded, impurity. All data are
collected on an RTX 2070, and an i7-9700k.

VCAS task results. For the first task, we consider the
entire set of VCAS models of the benchmark and we set a
desired coverage ratio of at least 90% as in (Zhang et al.
2025). Tab. 1 reports the mean across all the tested models.
As we can notice, the Exact method (Matoba and Fleuret
2020) achieves full coverage but at a prohibitive cost, as it re-
quires over 130 polytopes and takes more than 6300 seconds
on average to complete. This highlights the scalability bot-
tleneck of exact methods , which even on simpler instances
struggle to scale. Importantly, our RE-ProVe achieves the
same number of polytopes as PREMAP (Zhang et al. 2025)
(15) while maintaining extremely low impurity (less than
0.1%) but with an increase of 20x faster runtime, showcas-
ing the power of bootstrapped, data-driven strategies over
fixed symbolic solvers.

RL task results. In this experiment, we evaluate preim-
age approximation methods on neural network controllers
across several reinforcement learning tasks. Specifically, we
target a coverage of 75% for Cartpole and Lunarlander, and
90% for the more challenging DubinsRejoin task (Ravaioli

3We refer the interested readers to (Zhang et al. 2025) for a
comprehensive overview of the selected tasks.



Method Task Property Config #Poly Coverage Yoerror Time
Exact VCAS {y € R® | Nig[1,8] YO >yt as in (Matoba and Fleuret 2020) 131 100% 0% 6352.21s
PREMAP VCAS {v €RB% | Aicp,s) wo 2> i} as in (Matoba and Fleuret 2020) 15 90.8% 0% 12.85
e-ProVe VCAS {y € RY | Nig[1,8] YO >yt as in (Matoba and Fleuret 2020) 122 90.48% 0.02% 0.65s
RF-ProVe VCAS {y €eRY | Nig[1,8] Yo = v} as in (Matoba and Fleuret 2020) 15 90.5% 0.06% 0.3s
PREMAP Cartpole {y eR? | yo > v1} 6 € [—2,0] 66 75.5% 0% 32.37s
e-ProVe Cartpole {y €R? | yo > v1} 6 € [-2,0] 72 76.47% 0.27% 2s
RF-ProVe Cartpole {y €R? | yo > v1} 6 € [—2,0] 22 76.8% 0.3% 4.5
PREMAP Lunarlander {y e R* | Nic{0,2,3} Y1 > ¥i} v € [—4,0] 97 75.1% 0% 85.42s
e-ProVe Lunarlander {y e R* | Nic{0,2,3} Y1 > ¥i} v € [—4,0] 440 76.51% 0.5% 12.2s
RF-ProVe Lunarlander {y € R | Nie{o,2,3} Y1 >y} v € [—4,0] 42 75.63% 0.3% 59s
PREMAP Dubinsrejoin {y € R® | (Niern,31%0 = vi) AN(Nig[s,mya = vi)} T, € [—0.3,0.3] 1002 78.7% 0% 656.47s
e-ProVe Dubinsrejoin {y € R® | (Niern,31%0 = vi) AN(Nig[s,711ya > vi)} T, € [—0.3,0.3] 4929 85.02% 0.3% 260.23s
RF-ProVe Dubinsrejoin {y €R® | (Nier,31%0 = vi) AN(Nie[s,mya = vi)} z, € [—0.3,0.3] 136 90.08% 0.3% 66s

Table 1: Empirical evaluation results of preimage approximation for reinforcement learning tasks, with Exact (Matoba and
Fleuret 2020), PREMAP (Zhang et al. 2025), e-ProVe (Marzari et al. 2024) and RF-ProVe in gray proposed in this work.

et al. 2022). The Exact method (Matoba and Fleuret 2020) is
omitted from this evaluation, as it cannot scale to networks
of this size. The results demonstrate the effectiveness of our
proposed method. Across all tasks, RE—ProVe consistently
matches or exceeds the coverage achieved by existing meth-
ods, while requiring significantly fewer polytopes and less
computation time. The benefit of our approach is particu-
larly evident in the DubinsRejoin task, where PREMAP fails
to meet the 90% coverage target, achieving only 78.7% cov-
erage despite generating over 1000 polytopes and requiring
more than 650 seconds. Similarly, e-ProVe fails to meet the
desired coverage, reaching just 85% while producing a large
number of polytopes before encountering memory issues. In
contrast, RE—ProVe attains 90.08% coverage using just 136
polytopes and 66 seconds, with an impurity of only 0.3%,
crucially below the 1 — R = 0.5% desired. This highlights
a key strength of our approach: by allowing an infinitesimal
error, we can efficiently approximate high-coverage preim-
ages with high confidence, even for complex tasks where
exact or provable methods are no longer practical. These re-
sults demonstrate the scalability and practical relevance of
RF-ProVe, offering a valuable alternative for real-world
safety-critical applications where soundness can be slightly
relaxed in favor of crucial safety information gains.
Ablation study. To assess the contribution of our ac-
tive resampling strategy, we evaluate the performance of
RF-ProVe with and without this phase. Specifically, we
consider the solution of the method that skips the filtering
step and directly returns the pure positive leaves selected by
the Gini index from each decision tree, even if the num-
ber of positive samples in the leaf is fewer than the one

Method Task #Poly Coverage %error Time
RF-ProVe Cartpole 19 75.48% 0.39% 2.6s
RF-ProVe Cartpole 22 76.8% 0.3% 4.5s
RF-ProVe Lunarlander 190 76.33% 3.54% 20s
RF-ProvVe Lunarlander 42 75.63% 0.3% 59s
RF-ProVe Dubinsrejoin 308 90.26% 3.43% 39s
RF-ProVe Dubinsrejoin 136 90.08 % 0.3% 66s

Table 2: Ablation study of preimage approximation for rein-
forcement learning tasks, with RE-ProVe without filtering
phase (in white) and original (in gray).

derived theoretically. This isolates the effect of resampling
on compactness (number of polytopes), correctness (error
rate), and runtime. Table 2 summarizes the results on the
RL benchmarks. Across all tasks, active resampling consis-
tently reduces impurity by over an order of magnitude, from
> 3% down to less 0.5%, while also producing significantly
more compact solutions. For instance, in the LunarLander
task, the number of polytopes drops from 190 to 42 with
nearly identical coverage. While the resampling step intro-
duces a moderate runtime overhead (roughly 2x), the added
cost is negligible compared to the error reduction and in-
terpretability gain. These results highlight that active resam-
pling is crucial to achieving the desired statistical guarantees
of RF-ProVe. Without it, the method tends to overfit sparse
training data, returning leaf regions that appear pure but ac-
tually include a substantial number of non-positive inputs.
Hence, we can conclude that the filtering phase effectively
corrects this bias by validating each candidate box using a
statistically derived number of additional samples, ensuring
high-confidence guarantees on region purity. Scalability ex-
periments are reported in the appendix.

Discussion

In this work, we addressed the computational intractabil-
ity of exact neural network preimage bound computation
by proposing a novel probabilistic framework, RE-ProVe.
Our approach exploits the strength of bootstrap-based and
randomized methods to capture complex structures in high-
dimensional input spaces, introducing a random forest-
inspired method that combines passive learning with ac-
tive resampling to approximate preimage regions with high-
confidence guarantees. Our novel theoretical results provide
strong probabilistic guarantees on region purity and global
coverage of the returned solution. Empirically, RE-ProVe
significantly produces compact solutions, while maintaining
low impurity and high coverage, even on complex verifica-
tion tasks where existing exact, provable, and probabilis-
tic methods fail to scale. Overall, RE-ProVe represents
a promising shift toward scalable, data-driven verification
tools that retain strong probabilistic guarantees. Future work
may explore its integration with hybrid verification pipelines
and extensions to richer geometric representations.
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Appendix

Scalability experiments

To evaluate the scalability of RE-ProVe, we conducted experiments on a synthetic dataset with input dimensionalities ranging
in {2,5,7,10, 15,20, 30}, thus more than doubling the dimensions used in the empirical evaluation in the main paper. For each
dimensionality, we run RF-ProVe fixed number of training samples m, namely 20000, and resampling points n = 200, to get
a maximum tolerable error rate 1 — R = 5%. In all the experiments, we measure three key metrics: (i) the error rate, representing
the fraction of points incorrectly classified as safe, (ii) the number of polytopes and coverage, representing the fraction of the
true safe region captured by RE-ProVe, and (iii) the number of trees employed in the verification and their corresponding
runtime, representing the computational cost of verification.
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Figure 4: Scalability results on RE-ProVe for growing input dimensionality.

The results reported in Figure 4, indicate that both coverage and error remain stable across increasing input dimensions, with
coverage consistently above 75% and error below 5%. Runtime grows sublinearly, demonstrating that the approach remains
computationally feasible even in high-dimensional spaces. Furthermore, the results show that, as the input dimensionality
increases, both the number of trees and the number of polytopes returned by RF-ProVe grow approximately logarithmically
with dimensionality, demonstrating that the method adapts efficiently to higher-dimensional spaces. This behavior highlights
the effectiveness of the proposed solution in maintaining accurate coverage and low error while remaining computationally
feasible.



