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1. Introduction1

Deep Neural Networks (DNNs) have emerged as a groundbreaking tech-2

nology revolutionizing several fields ranging from autonomous navigation3

[1, 2] to image classification [3] and robotics for medical applications [4].4

However, despite remarkable successes, their vulnerability to adversarial at-5

tacks [5, 6], i.e., imperceptible modifications to input data that can lead6

to wrong and potentially catastrophic decisions when deployed, has raised7

crucial safety concerns. Consequently, understanding and explaining the de-8

cisions of black-box deep learning models has become a dominant goal in9

AI research. In this paper, we focus on counterfactual explanations (CFX),10

a popular class of explanation methods that aim to demystify the decision-11

making of a DNN by showing how an input needs to be changed to yield a12

different, typically more desirable, decision (see [7, 8] for recent surveys).13

To understand what makes CFXs useful, consider the widely used ex-14

ample of a loan application, where a mortgage applicant represented by an15

input x with features unemployed status, 25 years of age, and low credit16

rating applies for a loan and is rejected by the bank’s AI. A CFX for this17

decision could be a slightly modified input, where increasing credit rating18

to medium would result in the loan being granted. Ideally, a counterfactual19

explanation should be as close as possible to the original input to ensure that20

the changes it suggests are feasible. The approach of [9], showed how this21

requirement can be mathematically achieved by generating a counterfactual22

as close as possible to the decision boundary of a DNN. However, produc-23

ing explanations in this way raises critical concerns about their reliability24

(see [10] for a survey). For example, as illustrated in Figure 1, fine-tuning25

the model with additional data can significantly alter its decision boundary,26

potentially invalidating previously generated counterfactuals. This sensitiv-27

ity to the model changes for the counterfactuals poses critical questions about28

the reliability of explanations and long-term usability in dynamic settings.29

In particular, recent work has highlighted issues related to the robustness30

of CFXs against Plausible Model Changes (PMC) [11, 12], showing that the31

validity of CFXs is likely to be compromised when bounded perturbations are32

applied to the parameters of a DNN, e.g., as a result of fine-tuning [11, 13, 14,33

12, 15]. Consider the loan example: if retraining occurs while the applicant34

is working toward improving their credit rating, without robustness, their35
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Figure 1: Vignette illustrating the problem of robustness under model changes. A coun-
terfactual explanation is initially generated for a trained model (left). Then, the model is
updated to include new data (right). This step might induce slight changes in the decision
boundary of the model, ultimately invalidating the counterfactual explanation generated
in the first step.

modified case may still result in a rejected application, leaving the bank36

liable due to their conflicting statements.37

In this paper, we focus on this troubling phenomenon and advance the38

state of the art in CFX robustness research in several directions. More specif-39

ically, we start by studying the computational complexity of exactly deter-40

mining whether a CFX is robust to PMC in § 3. Our result formally shows for41

the first time that this is an NP-hard problem, thus providing new insights42

into algorithmic developments in this area.43

As our hardness results rule out the existence of practical algorithms to44

compute the CFX robustness in an exact fashion, we argue that probabilistic45

approaches are needed to obtain answers on the CFX robustness under model46

changes. Notably, the work by Hamman et al. [15], proposes a probabilis-47

tic approach to compute the robustness of CFX under Naturally-Occurring48

Model Changes (NOMC).1 Even though both PMC and NOMC notions are49

commonly used in the literature, very little is known about their potential50

interplay, and whether robustness to NOMC subsumes robustness to PMC51

is still unresolved. In § 4, we report a complete study of the two notions and52

formally prove that these two notions capture profoundly different scenarios.53

1In this work, we primarily use the term “model changes”, following the notation used
in recent surveys on the topic [10]. An alternative term “model shifts”, with similar
meaning, has also been used in related literature, as in [16]. The two terms will be used
interchangeably throughout.
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As a result, we demonstrate that robustness guarantees given for NOMC do54

not directly extend to PMC. Having settled this, in § 5, we present an ex-55

tended overview of our AP∆S , a novel sampling-based certification algorithm56

that allows us to determine a provable probabilistic bound on the maximum57

shift a CFX can tolerate under PMC. Unlike existing solutions for robustness58

under PMC, our approach comes with significantly reduced computational59

requirements and does not make any assumption on the underlying DNN,60

thus making it applicable to a wider range of architectures, including state-61

of-the-art transformer architectures.62

To confirm this aspect, in § 6, we present a thorough experimental evalua-63

tion analysing the performance of AP∆S , providing a comprehensive compar-64

ison of the proposed approach against several state-of-the-art methodologies65

for CFX robustness and different ablation studies. Crucially, we show that66

our approach outperforms existing methods on several metrics from the CFX67

literature, including validity, proximity, and plausibility.68

The paper is structured as follows. In § 2, we cover the related work,69

and in § 3, we introduce background notions on computing robust CFXs un-70

der model changes. § 3 presents our complexity analysis and offers complete71

proof of NP-hardness for both PMC and NOMC. Motivated by this result, in72

§ 4, we study existing approaches to generate probabilistically robust CFXs73

and analyze their interplay. Then, in § 5, we introduce our method to gen-74

erate robust CFXs, AP∆S , and evaluate it extensively in § 6. The core75

contributions of this work can be summarised as follows:76

• We prove, for the first time, that determining whether a CFX is robust77

to model changes in a deep neural network is an NP-complete problem,78

for both existing notions of NOMC and PMC. This finding highlights79

the need for further research into probabilistic methods to address this80

problem effectively.81

• We analyse existing approaches to generate probabilistic guarantees82

for CFXs under NOMC and demonstrate that these guarantees do not83

extend to PMC.84

• We present AP∆S , a scalable procedure that is able to generate prov-85

ably robust CFXs. This approach introduces an iterative algorithm86

to generate probabilistically robust CFXs, which are demonstrated to87

have superior performance against four robust baselines.88
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• To confirm the scalability and effectiveness of our solution, we employ89

AP∆S to certify the robustness of CFXs for state-of-the-art transformer90

architectures [17] employed in tabular data classification. To the best91

of our knowledge, we are the first to consider models of this size within92

the robust CFX literature [10].93

This paper builds upon our previous work[16] with significant extensions.94

Specifically, § 3 non trivially extends the corresponding section in [16] and95

offers a full hardness proof for the problem of deciding robustness of coun-96

terfactual explanations under PMC. As a corollary of this result, we are also97

able to show the hardness with respect to NOMC, thus providing a rigorous98

characterization of the complexity of verifying CFX robustness under existing99

notions of model changes. § 4 is also extended with a thorough experimental100

evaluation, complementing our theoretical findings of [16] and showing that101

PMC and NOMC capture very different robustness requirements in practice.102

Our experimental analysis in § 6 is also extended considerably. In particular,103

we present a novel analysis of the impact that the main hyper-parameters of104

AP∆S can have on the quality of CFXs it generates. Moreover, we demon-105

strate the scalability of our approach by presenting new results obtained on106

large-scale tabular transformers. To the best of our knowledge, this is the107

first time a method for robust CFXs has been shown to scale to state-of-the-108

art transformer models. These results complement our previous analysis and109

demonstrate the versatility of AP∆S , as well as its effectiveness in solving110

robustness issues in state-of-the-art machine learning models.111

2. Related Work112

Various methods for generating CFXs for DNNs have been proposed.113

The seminal work of [9] framed the task of generating CFXs as a gradient-114

based optimization problem and proposed a loss that promotes CFX validity115

(i.e., the CFX successfully changes the classification outcome of the network)116

and proximity (i.e., the CFX is as close as possible to the original input117

for some distance metric). In addition to these metrics, other important118

properties have been highlighted as crucial for the practical applicability of119

CFXs. Prominent examples include plausiblity (i.e., the CFX must lie on the120

data manifold) [18, 19] and actionability (i.e., the changes suggested by the121

CFX must be achievable by the user in practice) [20]. Differently from these122

works, here we focus on the robustness property of CFXs.123
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Several forms of CFX robustness have been studied in the literature [10].124

Robustness to input changes is the focus of, e.g. [21, 22, 23, 24, 25], where125

solutions are devised to ensure that explanation algorithms return similar126

CFXs for similar inputs. In another line of work, [26, 27, 28, 29] considered127

the problem of generating adversarially robust CFXs that preserve validity128

under imperfect (or noisy) execution. Robustness to model multiplicity is129

instead considered in, e.g. [19, 30, 31], where CFXs that preserve validity130

across sets of models are sought. However, the study of these forms of ro-131

bustness is outside the scope of this paper as our focus is on model changes.132

Robustness to model changes has been studied in, e.g. [32, 13, 14, 12, 15, 33].133

Of these, the approaches of [11] and [33] are the most closely related to our134

work. The former presents an approach to generate robust CFXs under PMS135

using techniques from continuous optimization, which is able to guarantee136

robustness in the average-case scenario. The latter instead solves the same137

problem using abstraction techniques and discrete optimization tools, obtain-138

ing robustness guarantees that hold under worst-case conditions. Given their139

relevance, both approaches will be considered for an extensive experimental140

comparison in § 6.141

3. Background142

Neural networks and classification tasks. Let X ⊆ Rd denote the in-143

put space of a classifier Mθ : X → [0, 1] mapping an input x ∈ X to an144

output probability between 0 and 1. We consider classifiers implemented145

by feed-forward DNNs parameterized by a (parameter) vector θ ∈ Θ ⊆ Rk.146

Given two parameter vectors θ, θ′ ∈ Θ, we refer to the corresponding clas-147

sifiersMθ andMθ′ as instantiations of the same parametric classifierMΘ.148

We assume concrete valuations of θ are learned from a set of labeled inputs149

as customary in supervised learning settings [34]. Once θ has been learned,150

the classifier can be used for inference. Without any loss of generality, we151

focus on binary classification tasks, i.e., the classification decision produced152

byMθ for an unlabeled input x is 1 ifMθ(x) ≥ 0.5, and 0 otherwise.153

Counterfactual explanations. Existing methods in the literature define154

CFXs as follows.155

Definition 1. Consider an input x ∈ X and a classifier Mθ s.t. Mθ(x) <156

0.5. Given a distance metric d : X × X → R+, a (valid) counterfactual157

explanation is any x′ such that:158

6



x′ = argmin
x̂∈X :Mθ(x̂)≥0.5

d(x, x̂)

Intuitively, given an input x for which the classifier produces a negative159

outcome, a counterfactual explanation is a new input x′ which is similar160

to x, e.g., in terms of some specified distance between features values, and161

for which the classifier predicts a different outcome. Common choices for d162

include the ℓ1 and ℓ∞ norms [9], which will also be used in this work.163

Robustness to model changes. Among several notions of robustness,164

recent work has placed emphasis on generating CFXs that remain valid under165

(slight) changes in the classifier they were generated for. While existing166

approaches rely on a diverse range of techniques to solve this problem, they167

all share a common understanding of what constitutes a model shift, which168

we present next.169

Definition 2 (Jiang et al. [12]). LetMθ andMθ′ be two instantiations of a170

parametric classifier MΘ. For 0 ≤ p ≤ ∞, the p-distance betweenMθ and171

Mθ′ is defined as dp(Mθ,Mθ′) = ∥θ − θ′∥p.172

Definition 3 (Jiang et al. [12]). A model shift (w.r.t. a fixed p-distance) is173

a function S mapping a classifier Mθ into another classifier Mθ′ = S(Mθ)174

such that:175

• Mθ andMθ′ are instantiations of the sameMΘ;176

• dp(Mθ,Mθ′) > 0.177

Informally, a model shift captures changes in the parameters of a DNN,178

but does not affect its architecture. Based on this definition, we can formalize179

the robustness property for a CFX as follows.180

Definition 4. Consider an input x ∈ X and a classifier Mθ s.t. Mθ(x) <181

0.5. Let x′ be a counterfactual explanation computed for x s.t. Mθ(x
′) ≥ 0.5.182

Given a set of model changes ∆, we say that the counterfactual x′ is ∆-robust183

if S(Mθ)(x
′) ≥ 0.5 for all S ∈ ∆.184

The definition of a model shift can be specialized to better characterize185

how θ is allowed to change under S. In the following, we report two most com-186

monly studied notions of model changes: Naturally-Occurring Model Changes187

and Plausible Model Changes.188
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Definition 5 ( Hamman et al. [15] (NOMC)). Consider a classifierMθ. A189

set of model changes ∆ is said to be naturally occurring if for a (randomly)190

chosen model change S from ∆ and Mθ′ = S(Mθ) being the new classifier191

obtained after applying S toMθ the following hold:192

• E[Mθ′(x)] =Mθ(x); where the expectation is over the randomness of193

Mθ′ given a fixed value of x;194

• Var[Mθ′(x)] = νx, where νx represents the maximum variance of the195

prediction ofMθ′(x), and whenever x lies on the data manifold X , νx196

is upper bounded by a small constant ν;197

• IfMθ is Lipschitz continuous for some γ1, thenMθ′(x) is also Lipschitz198

continuous for some γ2.199

Broadly speaking, a naturally-occurring model shift allows the application200

of arbitrary changes to θ as long as the resulting model remains part of a class201

of models that are expected to have the same behaviour. This is in contrast202

with the notion of plausible model shift [11, 12], which requires changes to203

be bounded.204

Definition 6 (Jiang et al. [12] (PMC)). Consider a classifier Mθ and a205

new classifierMθ′ = S(Mθ) obtained after applying a model shift S toMθ.206

Given some δ ∈ R>0 and 0 ≤ p ≤ ∞, S is said to be plausible (w.r.t. the207

choice of parameters δ and p) if dp(Mθ, S(Mθ)) ≤ δ.208

Therefore, for any choice of parameters p, δ, and any instantiationMθ of209

a parametric classifierMΘ we define the set of PMC ∆p obtained by consid-210

ering all changes S that satisfy Definition 6, i.e. ∆ = {S | dp(Mθ, S(Mθ)) ≤211

δ}.212

In the following, we will refer to any instantiation Mθ′ of MΘ which is213

obtainable by applying a model change in ∆ to Mθ as a realisation of ∆.214

Moreover, whenever it is not explicitly specified, we will tacitly assume that215

the underlying distance dp(·, ·) is the ∞-norm.216

Jiang et al. [12] proposed to reason about robustness under PMC using217

an Interval Neural Network (INN) [35] as an intermediate representation.218

Definition 7. An interval neural network I is a neural network where on219

each edge e is associated with an interval Ie = [ae, be]. A realisation of the220

INN I is a neural network having the same topology of I and such that the221

weight we on edge e satisfies we ∈ Ie,, i.e., it is taken from the interval222

associated to the same arc in I.223
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Jiang et al. [12] exploits the fact that the interval weights of an INN224

allow to represent an over-approximation of all the possible models obtain-225

able under a set of PMC ∆, thus providing a compact representation of the226

problem. Similarly, in our work, we use the INN representation to model227

the PMC concept. However, instead of analysing the robustness of counter-228

factual explanations through the entire INN, we focus directly on reasoning229

regarding the potential realisations within the set ∆. This results in several230

computational improvements as we will discuss in section 5.231

In this section, we study the computational complexity of deciding whether232

a given counterfactual explanation is robust in the presence of model shifts.233

Our aim here is to better understand the computational challenges arising234

from this problem and to use these results to guide the development of novel,235

more efficient certification procedures. Without loss of generality, we first fo-236

cus on PMC and show the NP-hardness of verifying CFX robustness with237

respect to this definition of model changes. Later, we show that the set of238

PMC used by our reduction also constitutes a set of NOMC, which implies239

that CFX robustness is, in general, also hard to verify with respect to NOMC.240

Deciding whether for a given Mθ a CFX x′ is robust with respect to a241

set of PMC ∆ requires to check if, for at least one model shift in ∆, there242

exists a realisation Mθ′ which classifies CFX x′ differently from Mθ, i.e.,243

Mθ′(x) < 0.5 ≤Mθ. This question is encoded in the following problem.244

Distinct-Realisations Problem (DRP)

Input: an instantiationMθ1 of a parametric classifierMΘ, an input
x such thatMθ1(x) ≥ 0.5, and a set ∆ of PMC.

Output: yes ⇐⇒ there exists an instantiationMθ2 ofMΘ which is
a realisation of ∆ and such thatMθ2(x) < 0.5

245

To prove the hardness of the problem, we show a reduction from a simple246

variant of 3-SAT, which we refer to as 3-NAF-SAT.247

3-NotAllFalse-SAT (3-NAF-SAT)

Input: a 3-CNF ϕ such that the assignment of all false values is not
satisfying, i.e., ϕ(false, false, . . . , false) = false.

Output: yes ⇐⇒ there exists an assignment a such that ϕ(a) = true.
248

9



The NP -completeness of 3-NAF-SAT immediately follows from the NP-249

completeness of 3-SAT. We provide a proof of this fact for the sake of self-250

containment of the paper.251

Theorem 1. 3-NAF-SAT is NP -complete.252

Proof. We show a reduction from 3-SAT. Let ψ be a 3-CNF formula over253

n variables x1, . . . , xn. Consider the 3-CNF formula ϕ over n + 1 variables254

defined by ϕ(x1, . . . , xn, xn+1) = ψ(x1, . . . , xn)∧ (xn+1∨xn+1∨xn+1). Clearly255

for the assignment a such that ai = false for each i = 1, . . . , n + 1 we256

have ϕ(a) = false, hence ϕ is a proper instance of 3-NAF-SAT, which is257

obtainable in polynomial time from the instance ψ of 3-SAT. Moreover, a =258

(a1, . . . , an, an+1) is a satisfying assignment for ϕ if and only if an+1 = true259

and ψ(a1, . . . , an) = true, i.e., if and only if a1, . . . , an is satisfying for ψ.260

Theorem 2. Deciding DRP is NP-complete.261

Proof. The inclusion of DRP in NP is trivial. A certificate is aMθ2 which is262

of the same size asMθ1 , hence polynomial in the input size. The verification263

of such a certificate, consists of a forward propagations of x throughMθ2 in264

order to check thatMθ2(x) < 0.5. This is clearly doable in time polynomial265

in the size of the classifier, i.e., polynomial in the input.266

For the hardness of DRP we show a reduction from 3-NAF-SAT. In267

particular, we show that there is a δ ∈ (0, 1] such that, given a 3-CNF268

formula ϕ, not satisfied by the all-false assignment, we can construct an INN269

I whose edge intervals are all of the width 2δ and an input x such that270

1. forMθ1 being the DNN with the same topology of I and such that for271

each edge e the weight we is taken as the central point of the interval272

assigned to e in I, we haveMθ1(x) ≥ 0.5;273

2. ϕ is satisfiable if and only if there exists another DNN Mθ2 which is274

also a realisation of I and such thatMθ2(x) < 0.5.275

Note that we are using the INN I to represent both the parametric clas-276

sifierMΘ and the set of PMC ∆, consisting of all the possible DNN being277

a realisation of I.278

We start by analysing several gadgets that will be used as building blocks279

of I. These gadgets are shown in Figures 2, 3, 4, 5.280

Lemmas 3-8 provide the key properties of such gadgets which will be used281

in the reduction. The parameter δ is a number in (0, 1) whose value will be282

fixed by the analysis.283
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Figure 2: Generating-gadget. The input to this gadget is the constant 1 represented by the
leftmost node. The output is the value χ computed in the rightmost node, that depends
on the weights chosen in the intervals on the two edges.
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Figure 3: Discretizer-gadget. The only non-constant input is the value computed in the
node labelled χ. The output is the value computed in the node labelled ŷ.

Lemma 3 (Generating-gadget). The value χ computed in the leftmost node284

of the Generating-gadget in Fig. 2, satisfies χ ∈ [0, 1].285

Proof. The value computed by the first node satisfies A ∈ [0, δ]. Hence, since286

χ = max{0, A · w} with w ∈ [1
δ
− 2δ, 1

δ
] we have χ ∈ [0, 1].287

Lemma 4 (Discretizer-gadget). Consider the Discretizer-gadget in figure 3288

with χ being the the leftmost node of a Generating-gadget, i.e., the corre-289

sponding value satisfies χ ∈ [0, 1]. Then, for the value ŷ the following holds:290

1. if ŷ > 1− δ then χ ∈ [0, δ] ∪ [1− δ, 1];291
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2. if χ ∈ {0, 1} then there are possible choices of the weights yielding292

ŷ = 1;293

3. if ŷ ̸= 1 then χ ̸∈ {0, 1}.294

4. ŷ ∈ [0, 1].295

Proof. The claims are a direct consequence of the following observations (re-296

fer to Fig. 3 for the notation):297

(a) if χ ∈ (δ, 1− δ) the A = 0 and B = 0, hence ŷ ∈ [(1− δ)(1− 2δ), 1− δ].298

(b) if 0 < χ ≤ δ then B = 0 and A ∈ [max{0, δ(1−2δ)−δ(1+2δ)}, δ−χ] ⊆
[0, δ). Hence

ŷ ∈ [(1− δ)(1− 2δ), (1− δ) + (δ − χ)] ⊆ [(1− δ)(1− 2δ), 1).

(c) if (1− δ) ≤ χ < 1 then A = 0 and B ∈ [max{0, (1− δ)(1− 2δ)− (1−
δ)(1 + 2δ)}, χ− (1− δ)] ⊆ [0, δ). Hence,

ŷ ∈ [(1− δ)(1− 2δ), (1− δ) + χ− (1− δ)] ⊆ [(1− δ)(1− 2δ), 1).

(d) if χ = 0 then B = 0 and A ∈ [δ(1− 2δ), δ], hence

ŷ ∈ [δ(1− 2δ)2 + (1− δ)(1− 2δ), 1].

In particular, for the realisations of I where the weights on the topmost299

edges and on the bottommost edge are chosen to be 1 we have ŷ = 1.300

(e) if χ = 1 then A = 0 and B ∈ [max{0, (1−2δ)−(1+2δ)(1−δ), δ] = [0, δ],
hence

ŷ ∈ [(1− δ)(1− 2δ), (1− δ) + δ] = [(1− δ)(1− 2δ), 1].

In particular, for the realisations of I where all the weights on the edges301

are chosen to be the maximum possible value, we have ŷ = 1.302

Item 1 in the statement follows directly from (a). Item 2 in the statement303

follows from (d) and (e). Item 3 in the statement follows from (b) and (c).304

Finally, Item 4 follows from the (a)-(e).305

Lemma 5 (Negation-gadget). With reference to the Negation-gadget in Fig.4,306

for any 0 < δ <
√
6
2
− 1, and χ ∈ [0, δ] ∪ [1− δ, 1], the following holds:307
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Figure 4: LOGICALPORTS

1. ¬χ ∈ [0, δ] ⇐⇒ χ ∈ [1− δ, 1];308

2. ¬χ ∈ [1− 3δ − 2δ2, 1] ⇐⇒ χ ∈ [0, δ].309

3. if χ ∈ {0, 1} then there is a choice of the weights of the Negation-gadget310

such that ¬χ = 1−χ. In other words, if the input value is binary, then311

there is a choice of the weights such that the Negation-gadget computes312

the boolean NOT of the input χ.313

Proof. We have ¬χ = max{0, w2 − |w1|χ} where w1 ∈ [−1 − 2δ] and w2 ∈314

[1− 2δ, 1]. Therefore315

(i) if χ ∈ [0, δ] it follows that

¬χ ∈ [(1− 2δ)− δ(1 + 2δ), 1− 0] = [1− 3δ − 2δ2, 1];

(ii) if χ ∈ [1− δ, 1] then

¬χ ∈ [max{(1− 2δ)− (1 + 2δ), 0}, 1− (1− δ)] = [0, δ].
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Moreover, because of the hypothesis 0 < δ <
√
6
2
− 1, we have that 1− 3δ −

2δ2 > δ and
[1− 3δ − 2δ2, 1] ∩ [0, δ] = ∅,

which implies that the implications hold also in the opposite direction.316

For the third claim of the lemma, it is enough to consider the weight in317

the associated interval for each edge whose absolute value is equal to 1.318

Lemma 6 (Clause-gadget). For the Clause-gadget in Fig.4, the following319

holds: Let 0 < δ ≤ 1
12
, and for each t = 1, 2, 3, let ℓ

[i]
t ∈ [0, δ]∪[1−3δ−2δ2, 1]2320

We have that,321

1. ci ∈ [0, 5δ + 6δ2] if and only if for all t = 1, 2, 3, ℓ
[i]
t ∈ [0, δ];322

2. ci ∈ [1− 5δ − 8δ2 − 4δ3, 1] if and only if there is t ∈ {1, 2, 3} such that323

ℓ
[i]
t ∈ [1− 3δ − 2δ2, 1].324

3. if for each t = 1, 2, 3, ℓ
[i]
t ∈ {0, 1} then there is a choice of the weights325

of the Clause-gadget such that ci ∈ {0, 1} and ci = 0 if and only if326

ℓ
[i]
1 = ℓ

[i]
2 = ℓ

[i]
3 = 0. In other words, if the input values are binary, then327

there is a choice of the weights such that the Clause-gadget computes328

the boolean OR of the inputs ℓ
[i]
t .329

Proof. Consider a realisation of the Clause-gadget. Let us denote by wL
t the330

weight taken from the interval on the edge connecting ℓ
[i]
t to A. Moreover,331

let w1 denote the weight taken from the interval on the edge connecting the332

fixed value node 1 to A. Let w2 be the weight taken from the interval on333

the edge connecting the fixed value node 1 to the output node of the gadget.334

Finally, let wA be the weight taken from the interval associated with the edge335

connecting the node A to the output node of the gadget.336

(i) If for all t = 1, 2, 3, it holds that ℓ
[i]
t ∈ [0, δ] then, using A = max{0, w1−∑3

t=1 |wL
t |ℓ

[i]
t }, we have that A ∈ [max{0, 1 − 2δ − 3δ(1 + 2δ)}, 1] ⊆

[1− 5δ − 6δ2, 1]. Since ci = max{0, w2 − |wA| · A}, we have

ci ∈ [max{0, (1− 2δ − (1 + 2δ)}, 1− (1− 5δ − 6δ2)] ⊆ [0, 5δ − 6δ2].

This shows the sufficiency of the condition in the first item of the337

statement.338

2Note that this corresponds to the case when ℓ
[i]
t is either the output ¬χ of a Negation-

gadget or the output χ of a Generating-gadget such that ŷ > 1− δ
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(ii) Assume there exists t̂ ∈ {1, 2, 3} such that ℓ
[i]

t̂
∈ [1− 3δ− 2δ2, 1]. Then

A = max{0, w1 − |wL
t̂ |ℓ

[i]
t +

∑
t̸=t̂

|wL
t |ℓ

[i]
t }.

It follows that

A ≥ max{0, (1− 2δ)− (1 + 2δ) · 1− 2(1 + 2δ) · 1} = 0,

and

A ≤ max{0, 1−1·(1−3δ−2δ2)−2·(1)·(0)} = max{0, 1−(1−3δ−2δ2)} = 3δ+2δ2.

Hence A ∈ [0, 3δ + 2δ2]. Therefore,

ci ∈ [max{0, (1−2δ)−(1+2δ)(3δ+2δ2)},max{0, 1−(1)·0}] = [1−5δ−8δ2−4δ3, 1].

This shows the sufficiency of the condition in the second item of the339

statement.340

Finally, because of the assumption δ ≤ 1
12

we have that 5δ − 6δ2 < 1− 5δ −
8δ2 − 4δ3 hence

[0, 5δ − 6δ2] ∩ [1− 5δ − 8δ2 − 4δ3, 1] = ∅,

which implies that the conditions in both items of the statement are also341

necessary.342

For the third claim of the lemma, it is enough to consider the weight in343

the associated interval for each edge whose absolute value is equal to 1.344

Lemma 7 (Conjunction-gadget). Consider the Conjunction-gadget in Fig.4.345

Let ñ denote the output of a Conjunction-gadget whose inputs are the346

values ŷ1, . . . , ŷn output by the n Discretizer-gadgets, with input χ1, . . . , χn,347

respectively, such that χj ∈ [0, 1].348

Let c̃ denote the output of a Conjunction-gadget whose inputs are values349

c1, . . . , cm. Assume also that for each i = 1, . . . ,m, ci is the output of a350

Clause-gadget whose inputs are either the output χj of a Generating-gadget351

or the output of a Negation-gadget whose input is the output of a Generating-352

gadget.353
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1. If ñ > n− δ then for each i = 1, . . . ,m it holds that ŷi ∈ (1− δ, 1], and354

χi ∈ [0, δ] ∪ [1− δ, 1].355

2. If c̃ > m − (5δ + 8δ2 + 4δ3) then for each i = 1, . . . ,m it holds that356

ci ∈ (1− (5δ + 8δ2 + 4δ3), 1].357

Proof. The first claim follows from Lemma 4. In particular, by Lemma 4,358

the condition on the values χj implies ŷi ∈ [0, 1]. Moreover, by ñ > n− δ, it359

follows that for each i we have ŷi > 1 − δ. Again, by Lemma 4, this implies360

that χi ∈ [0, δ] ∪ [1− δ, 1].361

For the second claim, we first observe that the hypotheses on the Clause-362

gadget whose outputs are the values c1, . . . cm, imply that the input to such363

gadgets satisfies the hypotheses of Lemma 6. Therefore, for each i = 1, . . . ,m,364

it holds that ci ∈ [0, 5δ + 6δ2] ∪ [1− 5δ − 8δ2 − 4δ3, 1]. It follows that, if c̃ >365

m−5δ−8δ2−4δ3 for each i = 1, . . . ,m, it holds that ci > 1−5δ−8δ2−4δ3.366

Figure 5: End-gadget

Lemma 8 (End-gadget). Consider the End-gadget in Fig. 5). For any choice367

of edge weights, it holds that if z < 1/2 then368

• ñ > n− δ;369

• c̃ > m− (5δ + 8δ2 + 4δ3).370
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Proof. We have that

z ≥ max{0, n+m+
1

2
− δ − ñ− c̃}.

We show that if one of the inequalities in the statement is violated, then371

z ≥ 1/2.372

Suppose that ñ ≤ n− δ. Then, since c̃ ≤ m, it follows that z ≥ n+m+373

1/2− δ − n+ δ −m = 1/2.374

Suppose now that c̃ ≤ m− (5δ+8δ2+4δ3) ≤ m− δ = m− δ. Then, since375

ñ ≤ n, it follows that z ≥ n+m+ 1/2− δ − n−m+ δ = 1/2.376

Figure 6: A complete example of the reduction on a simple formula, with n = 3 variables
and m = 2 clauses. All the interval weights not explicitly given are [1− 2δ, 1]

The reduction R : ϕ 7→ Iϕ = (Mϕ
θ1
, xϕ,∆ϕ). Fix a 3-CNF ϕ(x1, . . . , xn),377

such that ϕ(a) = false, for the assignment a = (false, . . . , false). Fix a378
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positive rational number δ ≤ 1
12
. Consider the INN I = Iϕ built as follows379

(refer to Fig. 6 for an example of this construction):380

1. For each variable xi add to the network a copy of the Generating-gadget381

(and refer to it as Gen(χi)) and a copy of the Discretizer-gadget (and382

refer to it as Disci).383

2. For each i = 1, . . . , n, connect Gen(χi) to Disci by identifying the384

output node χi of Gen(χi) with the non-constant input node χ ofDisci.385

Refer to the output node/value of Disci as ŷi (see also Fig. 3).386

3. For each clause Cj = (λ
(j)
1 ∨ λ

(j)
2 ∨ λ

(j)
3 ) (j = 1, . . . ,m) of ϕ add a387

Clause-gadget, henceforth referred to as Clausej. For each t = 1, 2, 3,388

• if λ
(j)
t corresponds to the positive variable xi then create a connec-389

tion so that the input of Clausej that is labelled ℓ
(j)
t is the output390

χi of the generating Gen(χi) associated to xi.391

• if λ
(j)
t corresponds to the negated variable ¬xi then make a connec-392

tion so that the input of Clausej that is labelled ℓ
(j)
t is the output393

of a negation gadget, and the input of such negation gadget is the394

output χi of the Generating-gadget Gen(χi).395

4. Add a conjunction gadget such that its inputs are the outputs ŷi (i =396

1, . . . , n) of the Discretizer-gadgets. Let ñ denote the output of such397

conjunction gadget.398

5. Add a conjunction gadget such that its inputs are the outputs cj399

(i = 1, . . . ,m) of the Clause-gadgets. Let c̃ denote the output of such400

conjunction gadget.401

6. Finally, add an End-gadget (Fig. 5) and connect it to the rest of the402

network by making the output ñ, c̃ of the above conjunction gadgets403

(defined in items 4, 5) coincide with the End-gadget inputs marked404

with ñ and c̃, respectively.405

The above construction defines the topology of the DNN, representing the406

parametric classifierMΘ. The classifierMϕ
θ1

is chosen to be the realisation407

of Iϕ obtained by setting the weight on each edge e to the middle point of408

the interval associated to e. Such a classifier takes as input x a vector whose409

components are410

• the value in the leftmost node of each Generating-gadget. In the input411

xϕ defined for our reduction these values are set to 1 as in Fig.7 ;412
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• the values in the first (top) and the two last (bottom) nodes in each413

Discretizer-gadget. In the input xϕ defined for our reduction these414

values are set to δ, (1− δ), and (1− δ), respectively as in Fig.3;415

• the values in the lowest node of each Clause-gadget. In the input xϕ416

defined for our reduction these values are set to 1 as in Fig.4;417

• the values in the lowest node of each Negation-gadget. In the input xϕ418

defined for our reduction these values are set to 1 as in Fig.4;419

• the values in two bottom nodes of the End-gadget. In the input xϕ420

defined for our reduction these values are set to n + m and 1
2
− δ,421

respectively, as in Fig.5.422

Finally ∆ϕ is defined as the set of realisations of I.423

It is easy to see that by fixing the value δ so that it can be encoded424

by number of bits polynomial in the size of ϕ, the instance Iϕ can be425

constructed from ϕ in polynomial time, since each gadget has a constant426

size, the number of gadgets is polynomial in the size of the formula, and the427

input vector x can be described by a number of bits polynomial in the size428

of δ and the size of Iϕ.429

We first prove a lemma that characterises realisations of I such that the430

output of each χi is binary.431

Lemma 9. The following two claims characterise the realisations of I such432

that for each i = 1, . . . , n, it holds that χi ∈ {0, 1}.433

1. Fix a truth assignment a such that ϕ(a) = false. For any realisation434

Mθ of I such that for each i = 1, . . . , n it holds that χi = 0 if ai = false435

and χi = 1 if ai = true it holds thatMθ(x) ≥ 1
2
.436

2. Fix a truth assignment a such that ϕ(a) = true. Then, there exists a437

realisationMθ of I such that for each i = 1, . . . , n it holds that χi = 0438

if ai = false and χi = 1 if ai = true, andMθ(x) <
1
2
.439

Proof. We show the two claims separately.440

1. For the first claim, we observe that441

(a) ñ ≤ n.442
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(b) Since ϕ(a) = false, there exists i ∈ [m] such that the assignment443

a makes all the literals in the ith clause to be false. We also have444

that the values ℓ
[i]
t s, input to the clause gadget encoding the ith445

clause, will satisfy ℓ
[i]
t ∈ [0, δ]—in particular, we have ℓ

[i]
t = χj = 0446

if the literal corresponds to some variable xj = false; and, if the447

the literal correspond to the negation of some variable xj = true,448

hence ℓ
[i]
t = ¬χj with χj = 1 and by Lemma 5 ¬χj ∈ [0, δ].449

Therefore, by Lemma 6, we have ci ∈ [0, 5δ + 6δ2]. It follows that
c̃ < m− δ and

z ≥ max{0, 1
2
− δ + n+m− ñ− c̃} ≥ 1

2
− δ + n+m− n−m+ δ =

1

2

2. For the second claim, consider the realisation obtained by setting the450

weights as follows:451

• in the i-th generating gadget (the one associated to xi) the weights452

are chosen in order to have output χ = 1 if ai = true and χ = 0453

if ai = false;454

• in all the other gadgets, the weights are set to the value w such455

that |w| = 1.456

Because of the correspondence ai = true → χi = 1 and ai = false →457

χi = 0, by Lemma 4, we have ŷi = 1 for each i = 1, . . . , n. Hence ñ = n.458

Because of the choice of the weights being all of the absolute value one,459

it is also easy to see that, interpreting true as 1 and false as 0, for each460

i = 1, . . . ,m and t = 1, 2, 3, we have an exact correspondence between461

the truth value assigned by a to the tth literal of the ith clause and462

the value ℓ
[i]
t . Hence, by the assumption that ϕ(a) = true, we also have463

that ci = 1 for each i = 1, . . . ,m. It follows that c̃ = m.464

Therefore,

z = max{0, 1
2
− δ + n+m− ñ− c̃} = 1

2
− δ < 1

2

465

Let Mθ1 be the realisation of I obtained by setting the weight on each466

edge e to the middle point of the interval associated to e. Let a be the467

assignment for ϕ such that ai = false for each i = 1, . . . , n. Therefore,Mθ1468
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coincides with the realisation of I such that for each i = 1, . . . , n it holds469

that χi = 0 and the hypotheses of Lemma 9 are satisfied Hence, by Lemma470

9, it holds thatMθ(x) ≥ 1
2
. We have shown the following.471

Lemma 10. For each instance ϕ of 3-NAF-SAT, the reduction R produces472

in polynomial time a proper instance (Mθ1 , I, x) of DRP.473

In order to complete the proof of the Theorem, the following remains to474

be shown.475

Lemma 11. The formula ϕ is satisfiable if and only if there is a realisation476

Mθ2 of I, such thatMθ2(x) <
1
2
.477

Proof. The sufficiency of the condition directly follows from the second claim478

of Lemma 9, which shows that: If there exists an assignment a such that479

ϕ(a) = true then there is a realisationMθ2 of I, such thatMθ2(x) <
1
2
.480

Let us now focus on the other direction. Assume that there is a realisation481

Mθ2 such thatMθ2(x) <
1
2
. By Lemma 8, it follows that for the realisation482

Mθ2(x) it holds that ñ > n− δ and c̃ > m− (5δ + 8δ2 + 4δ3).483

Then, by Lemma 7 it follows that484

1. for each i = 1, . . . , n it holds that ŷi ∈ (1−δ, 1], and χi ∈ [0, δ]∪[1−δ, 1];485

2. for each i = 1, . . . ,m it holds that ci ∈ (1− (5δ + 8δ2 + 4δ3), 1].486

These two conditions together with δ < 1/12 imply, by Lemmas 4, 5 and 6,487

that for each i = 1, . . . ,m, there is t ∈ {1, 2, 3} such that one of the following488

holds489

1. ℓ
[i]
t ∈ [1 − 3δ − 2δ2, 1] and ℓ

[i]
t coincides with some output ¬χj of a490

negation-gadget, and the input value satisfies χj ∈ [0, δ]; moreover by491

construction, then literal λ
[i]
t is ¬xj;492

2. ℓ
[i]
t ∈ [1 − δ, 1] and ℓ[i]t coincides with some output χj of a generating-493

gadget, whence by construction, then literal λ
[i]
t is xj494

Let a = (a1, . . . , an) be the truth assignment defined by

ai =

{
true if χj ≥ 1− δ
false if χj ≤ δ.

Then, for each clause i = 1, . . . ,m at least one literal is set to true, and495

ϕ(a) = true.496
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The proof is complete.497

From Theorem 2, it follows that deciding whether a CFX x′ is not robust498

to a set of PMC ∆ is NP-complete. We now show that the above reduction499

can be used to prove the NP-completeness of deciding robustness with respect500

to a set ∆ of NOMC models. In particular, we have the following:501

Theorem 12 (Hardness of DRP for NOMC). Given classifierMθ1 , an input502

x and a set ∆ of NOMC, deciding whether ∃ Mθ2 ∈ ∆ s.t E[Mθ2(x)] <
1
2
≤503

Mθ1(x) is NP-complete.504

Proof. The proof of the inclusion in NP is analogous to the one of DRP for505

PMC models.506

For the hardness, we use again a reduction from 3-NAF-SAT: given a507

3-CNF ϕ that is not satisfied by the all-false assignment, build an interval508

neural network exactly like in Theorem 2 but for one difference consisting in509

the interval of weights on the first edge of the Generating-gadget, which are510

now set to [0, 2δ] as in Fig. 7.511

Figure 7: Generating-gadget used in this proof.

We denote by INOMC this interval neural network. obtained from this512

reduction starting from a 3-CNF ϕ. Note that the new generating-gadget513

can also produce any value in [0, 1]. More generally, we have the following514

important remark.515

Remark 1. Lemmas 3-8 also hold for the interval neural network INOMC .516

We define Mθ1 to be the realisation of INOMC obtained by setting the517

weight on each edge e to the middle point of the interval associated with e.518

The input value x is defined as in the proof of Theorem 2. We also let ∆ to519

be the set of realisation of INOMC .520

From the above remark and the proof of Theorem 2, it follows that the521

3-CNF ϕ has a satisfying assignment if and only if there exists a realisation522

Mθ2 in ∆ such thatMθ2(x) < 0.5.523
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Then, in order to complete the proof, we only need to show thatMθ1(x) ≥524

1
2
and ∆ properly defines a set of NOMC forMθ1 (Def. 5), which we recall525

here for readability purposes:526

1. E[Mθ(x)] =Mθ1(x); where the expectation is over the randomness3 of527

Mθ;528

2. Var[Mθ(x)] = νx, where νx represents the maximum variance of the529

prediction ofMθ(x), and whenever x lies on the data manifold X , νx530

is upper bounded by a small constant ν;531

3. IfMθ1 is Lipschitz continuous for some γ1, thenMθ is also Lipschitz532

continuous for some γ2.533

For a (random or fixed) realisation Mθ of INOMC and a node ν, let534

us denote by νθ the value computed in the node ν by Mθ on input x. In535

accordance with the analysis in Theorem 2, we assume δ = 1/12.536

To show thatMθ1(x) ≥ 1
2
and that ∆ satisfies property 1 for being a set537

of NOMC, we prepare the following.538

Lemma 13. LetMθ be a random realisation of INOMC . It holds that539

1. for the output node χ of each Generating-gadget, we have E[χθ] = χθ1 =540

1
2
− δ2.541

2. for the the output node ¬χ of each Negation-gadget we have E[¬χ] =542

¬χθ1 =
1
2
− 3

2
δ + δ2 + δ3.543

3. for the the output node ŷ of each Discretizing-gadget we have E[ŷθ] =544

ŷθ1 = 1− δ545

4. for the output node c of each Clause-gadget we have E[cθ] = cθ1 = 1− δ546

5. for the output node c̃ of the Conjunction-gadget collecting the outputs547

of the Clause-gadgets we have E[c̃θ] = c̃θ1 = m(1− δ)2548

6. for the output node ñ of the Conjunction-gadget collecting the outputs549

of the Discretizing-gadgets we have E[ñθ] = ñθ1 = n(1− δ)2550

7. for the output node z of the End-gadget, we have E[zθ] = zθ1 ≥ 1
2
.551

Proof.552

3In our case this is a random realisation of INOMC , i.e., a realisation of INOMCobtained
by independently choosing the weight on each edge sampling uniformly at random from
the interval associated to that edge.
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1. Let w1, w2 denote the weights on the edges of the Generating-gadget,
respectively, in order from left to right. Because of the independence
of the choices of the weights of the random realisationMθ, we have

E[χθ] = E[w2]E[Aθ] = E[w2]E[w1] =

(
1

δ
− δ

)
δ =

1

2
− δ2.

It is immediate to verify that this value is equal to χθ1 .553

2. Let w1, w2 denote the weights on the top edge and the bottom edge,
respectively, of the Negation-gadget. Using 1. the independence in the
choice of the weights, and the fact that with δ = 1

12
the argument of

the ReLU is always non-negative, we have that

E[¬χθ] = E[χθ] · E[w1] + E[w2].

The claim then follows by the fact that the expected values of the554

weights are given by the middle point of the intervals from which they555

are respectively taken.556

3. Item 1. and the first claim of Lemma 4, together with δ = 1/12 imply557

that both for a random realisation and for the realisation Mθ1 , the558

(expected) values computed in nodes A and B of the discretizing-gadget559

are both 0. Hence, we have E[ŷ] = E[wθ], where w denotes the weight560

on the lowest edge of the gadget. By noticing that this expected value561

is equal to the middle point of the interval, we have the desired result.562

4. Because of 1. and 2. we have that the expected value (as well as the563

value computed by Mθ1 on x) of the input nodes ℓ
[i]
t of each clause-564

gadgets are from the set {1
2
− δ2, 1

2
− 3

2
δ + δ2 + δ3} It follows that the565

argument of the ReLU function computed in the node A is negative.566

Hence, we have E[c] = E[wθ], where w denotes the weight on the lowest567

edge of the gadget. Again, noticing that this expected value is equal568

to the middle point of the interval gives the desired result.569

5. For a realisationMθ let wθ,i denote the weight on the ith edge (counting
from top to bottom) of the conjunction-gadget collecting the outputs of
the Clause-gadgets, and cθ,i the output value of the ith clause gadget,
as computed byMθ on input x. Then, we have

E[c̃θ] =
m∑
i=1

E[cθ,i] · E[wθ,i].
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The results follow from 4. and the fact that the expected value of a570

uniformly sampled weight is equal to the middle point of the interval571

from which it is taken.572

6. The proof of this point is analogous to the proof of 5.573

7. For a realisationMθ let wθ,i denote the weight on the ith edge (counting
from top to bottom) of the End-gadget. We start by observing that
from the results of the previous points, it follows that the argument of
the RELU function in node z is always non-negative. Hence, we have

E[zθ] = E[ñθ]·E[wθ,1]+E[c̃θ]·E[wθ,2]+(n+m)·E[wθ,3]+

(
1

2
− δ

)
·E[wθ,4]

Then, the equality E[zθ] = zθ1 in the claim follows again from the fact574

that the expected values of the weights of a random realisation are575

equal to the middle point of the interval, i.e., the value of the weight576

on the edge in the realisationMθ1 . The inequality in the claim follows577

from Lemma 8 since, with δ = 1/12, it holds that n(1− δ)2 < n− δ.578

579

Claim 7 of the lemma directly implies that the first property of an NOMC580

is satisfied by ∆, i.e., E[Mθ(x)] =Mθ1(x). The same claim also proves that581

Mθ1(x) ≥ 1
2
.582

For the second property, namely Var[I(x)] = νx, we use the uniform583

continuity of the function computed by the realisations of INOMC , which is a584

direct consequence of being linear combinations of RELU functions which are585

Lipschitz continuous functions, hence uniform continuous. By the Extreme586

Value Theorem (see, e.g., [36, Thm. 4.16]) any realisation of INOMC will be587

bounded and achieve its minimum and maximum on the compact domain,588

and thus the variance will be indeed bounded.589

Finally, the last property follows from the fact that the linear composition590

of Lipschitz continuous operations (ReLU) is also Lipschitz continuous, which591

is indeed the case of any realisation of INOMC .592

Summarizing, we have shown the following.593

Corollary 14. Given a modelMθ, a CFX x′ and a set of either NOMC or594

PMC model changes ∆, the problem of verifying the ∆-robustness of x′ is595

NP-complete.596
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These hardness results motivate the introduction of novel approximate597

solutions to estimate the robustness of a counterfactual under a set of PMC598

∆.599

4. Probabilistic Guarantees for Existing Notions of Model Changes600

As we have established in the previous section, exact methods for com-601

puting robustness under model changes are bound to lack scalability. This602

motivates the design of approximate and/or probabilistic approaches to solve603

the problem. Previous work by Hamman et al. [15] presented an approach604

to obtain counterfactual explanations that are probabilistically robust under605

NOMC. A natural question that arises then is whether guarantees obtained606

for NOMC also transfer to the PMC setting. As we show for the first time607

below, this is not the case in general.608

Lemma 15. Naturally-Occurring model changes may not be Plausible, and609

vice-versa.610

Proof. Consider the DNNMθ depicted in Fig. 8 (a) with two input nodes,611

one hidden layer with two ReLU nodes4 and one single output. The param-612

eters θ = [w1, . . . , w6] are the weights on the edges listed top-bottom and613

left-right.614

x1

x2

y

1

0

0

0.6

1

−1

x1

x2

y

[0.7, 1.3]

[−0.3, 0.3]
[−0.3, 0.3]

[0.3, 0.9]

[0.7, 1.3]

[−1.3,−0.7]

Figure 8: (a) The model Mθ used as an example to prove the lemma. (b) An interval
neural network representing the realisations that can be obtained fromMθ considering a
set of PMC ∆δ with δ = 0.3.

Propagating an input vector x = [x1, x2]
T throughMθ, we obtainMθ(x) =

y = w5 ·max{0, w1 ·x1+x2 ·w3}+w6 ·max{0, w2 ·x1+x2 ·w4}. Now assume

4In this proof, we consider a DNN with only ReLU activation functions. However, we
notice that it is possible to have a similar counterexample even with other activations,
e.g., Tanh, Sigmoid.
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an input vector x = [0.9, 0.9]T and weights w1 = 1, w2 = 0, w3 = 0, w4 =
0.6, w5 = 1, w6 = −1. The corresponding output generated by the DNN is
Mθ(x) = 0.46. A counterfactual for x could be given as a new input vector
x′ = [1, 0.8]T , for which we obtainMθ(x

′) = 0.52 > 0.5. Now, following Def-
inition 6, we consider a set of plausible model changes obtained for δ = 0.3.
This can be captured by defining on each weight wi the corresponding inter-
val in [wi − δ, wi + δ] depicted in Fig. 8 (b) that represents the set of all the
possible models obtained from Mθ, replacing each wi with a weight in the
interval [wi − δ, wi + δ]. We then have that the expected result of a model
Mθ′ sampled uniformly from such a set satisfies:

E[Mθ′(x
′)] = E[w5] · E[ReLU(x1 · w1 + x2 · w3)] +

E[w6] · E[ReLU(x1 · w2 + x2 · w4)]

= E[[0.7, 1.3]] · E[max{0, x1 · [0.7, 1.3] +
x2 · [−0.3, 0.3]}] + E[[−1.7,−0.3]]·
E[max{0, x1 · [−0.3, 0.3] + x2 · [0.3, 0.9]}]
> 0.52 ̸=Mθ(x

′)

Definition 5 states that a model change is naturally occurring if E[Mθ′(x)] =615

Mθ(x). This implies that ∆ contains models that cannot be characterized616

as naturally occurring model changes. Vice versa, the existence of Naturally-617

Occurring model changes not being plausible is implicit in the definition, and618

for the sake of completeness, we provide an example network in Fig. 9.619

Consider a DNN having a single input value x and a single parameter θ620

and computing the functionMθ(x) = ReLU(0.5−ReLU(x− θ))621

1

x

1

y0.5

1

−θ

−1

1

Figure 9: The DNN considered in this proof
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Table 1: Empirical evaluation across model perturbations of increasing magnitude δ and
different sample sizes n.

Credit Spam News

n = 1000 n = 10000 n = 1000 n = 10000 n = 1000 n = 10000

Avg diff. Rej. (%) Avg diff. Rej. (%) Avg diff. Rej. (%) Avg diff. Rej. (%) Avg diff. Rej. (%) Avg diff. Rej. (%)

δ = 0.05 0.008 90 0.022 90 0.018 50 0.017 70 0.034 70 0.033 80

δ = 0.1 0.017 100 0.047 100 0.034 100 0.035 100 0.064 80 0.063 100

δ = 0.2 0.046 100 0.086 100 0.0748 90 0.064 100 0.127 90 0.141 100

δ = 0.3 0.110 100 0.140 90 0.121 100 0.087 100 0.207 90 0.173 100

Fix a data set X and let θ = maxx∈X x. Let us consider the set of model
changes Σ = {Sτ | τ ∈ R+} defined by Sτ (Mθ) = Mθ+τ . Clearly for any
τ ≥ 0, we have

Mτ+θ(x) =Mθ(x) = 0.5,

for any x ∈ X . This trivially implies that Σ is a set of naturally occurring622

model changes (all changes considered have exactly the same value in all623

points in X ).624

The claim now follows by observing that there is no finite δ such that the625

corresponding set of plausible model changes ∆ = {S | dp(Mθ, S(Mθ)) ≤ δ}626

contains Σ.627

628

Lemma 15 shows the existence of witnesses proving that Definition 5629

(NOMC) and Definition 6 (PMC) may capture very different model changes630

in general. To complement this observation, we also ran experiments to631

determine how often these definitions disagree empirically. In particular, we632

considered three binary classification datasets commonly used in Explainable633

AI:634

• the credit dataset [37], which is used to predict the credit risk of a635

person (good or bad) based on a set of attributes describing their credit636

history;637

• the spambase dataset [38] is used to predict whether an email is to be638

considered spam or not based on selected attributes of the email;639

• the online news popularity dataset [39], referred to as news in the fol-640

lowing, is used to predict the popularity of online articles.641
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We trained a neural network classifier with two hidden layers (20 and 10642

neurons, respectively) for each dataset and used a Nearest-Neighbor Counter-643

factual Explainer [40] to generate counterfactual explanations for 10 different644

inputs. After generating a counterfactual, we produce n different perturba-645

tions Mθ′ of the original neural network Mθ for n ∈ {1000, 10000} under646

plausible model change with ∆ ∈ {0.05, 0.1, 0.2, 0.3}. We then considered647

two measures:648

• average difference in output between Mθ and Mθ′ , for each of the n649

modelMθ′ and across all CFXs;650

• for each counterfactual, we perform a one-sided t-test to check whether651

the average prediction generated by n modelsMθ′ equals the original652

prediction ofMθ. We report the percentage of CFXs for which the null653

hypothesis was rejected (p-value used 0.05).654

Table 1 reports our results. We observe that the requirement that the655

expected output of perturbed models remains equal to the original predic-656

tion is often violated. These results complement the result of Lemma 15,657

confirming that the two notions indeed capture two different settings in gen-658

eral. In particular, our results show that (probabilistic) methods devised for659

NOMC may fail to guarantee robustness under PMC, thus motivating the de-660

velopment of dedicated approaches for probabilistic guarantees under PMC.661

Indeed, having clarified the relationship between the two notions of model662

changes, in the following, we focus on certification approaches for robust-663

ness under PMC, presenting a novel approximate solution with probabilistic664

guarantees.665

5. Robustness under PMC with Probabilistic Guarantees666

Jiang et al. [12, 33] proposed to use INNs to enable a compact represen-667

tation of a superset of the models that can be obtained by a perturbation668

of the starting model under a set ∆. By exploiting an exact reachable set669

computation method, e.g., based on MILP [41], the authors could determine670

whether or not a CFX is robust under the chosen ∆ via a single forward671

propagation of the CFX. However, in view of the NP-hardness of the prob-672

lem discussed in the § 3 and the typical non-linear nature of the classifiers,673

it presents some computational limitations.674
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Figure 10: Visual representation of the possible output reachable set for an interval ab-
straction for a binary classification model. (a) For a given ∆, we classify an input as 1
(robust) if the output range for that input is always greater 0.5. Otherwise, the input is
classified as 0, i.e., not robust (b),(c).

In general, interval neural networks map inputs to intervals representing675

an over-approximation of all possible outcomes that can be produced by any676

shifted model Mθ′ obtained under ∆. Given this property, if the output677

reachable set is completely disjoint from the decision threshold 0.5, then one678

can assert – in a sound and complete fashion – whether or not a given CFX679

is robust (Fig. 10 (a,c)). On the other hand, if we run into a situation such as680

the one depicted in Fig. 10 (b), one cannot assert robustness with certainty.681

In this scenario, Jiang et al. [12] propose to classify the CFX as not robust,682

which preserves the soundness of their result. Nonetheless, this might lead to683

discarding a CFX even when the actual probability that after retraining, we684

incur in plausible model changes for which the CFX is not robust is extremely685

low. As we will show in § 6, this worst-case notion of robustness affects the686

CFXs generated by [12], which may end up being unnecessarily expensive687

(in terms of proximity) and having low plausibility. Additionally, computing688

the exact output reachable set of an interval abstraction may be costly (e.g.,689

MILP is known to be NP-hard). This is expected: Theorems 2 and 3 show690

that there is no polynomial time algorithm able to return an exact estimate691

of the fraction of plausible changes for which the CFX is robust (hence a692

fortiori deciding whether it is ∆-robust), unless P=NP. In the following, we693

propose a novel certification approach that aims to alleviate this problem.694

5.1. A Provable Probabilistic Approach695

One possible idea to avoid exact reachable set computation to determine696

the robustness of a CFX under PMC is to use naive interval propagation.697

Given an input CFX, we propagate this input through the network, keeping698

track of all the possible activation values that can be obtained under ∆ until699
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the output layer is reached. However, the non-linear and non-convex nature700

of DNNs may result in a significant overestimation of the actual reachable set,701

thus resulting in a spurious decision of non-robustness. In such cases, a CFX702

may end up being labeled as non-robust even though the CFX is actually703

robust. Additionally, even with exact methods, a CFX may be discarded704

even though the fraction of plausible model changes in ∆ for which the CFX705

is not robust is negligible.706

To avoid these problems, we propose an approximate certification ap-707

proach based on Monte-Carlo sampling that draws sample realisations di-708

rectly from ∆ to obtain an underestimation of the space of possible classifi-709

cations under PMC. The idea of using a sample-based approach stems from710

the fact that the ∆ set, representing all the plausible model changes, ab-711

stracts an infinite number of models to test. As testing this infinite number712

of models may be impossible in practice, efficient sampling-based solutions713

hold great promise. In detail, given a CFX x′ we can compute an underesti-714

mation of the output reachable set under ∆ by sampling n random realisa-715

tionsMθ1 , . . . ,Mθn from ∆, and compute the output reachable set by taking,716

respectively, the miniMθi(x
′) and the maxiMθi(x

′) for i ∈ {1, . . . , n}.717

This approach is very effective and allows us to obtain an estimate of the718

output reachable set without using an exact solver. Nonetheless, the number719

n of realisation to sample in order to achieve a good reachable set estimation720

remains unclear, as well as what kind of guarantees one could obtain from721

this approach. To answer these questions, we leverage previous results on722

the statistical prediction of tolerance limits [42]. Indeed, we observe that723

for each realisation Mθi sampled from ∆, the resulting output of the DNN724

Mθi(x
′) can be interpreted as an instantiation of a random variable X whose725

tolerance interval we are trying to estimate. Following this observation, we726

can derive a probabilistic bound on the correctness of the solution returned727

from n samples, using the following lemma based on [42]:728

Lemma 16. Fix an integer n > 0 and an approximation parameter R ∈729

(0, 1). Given a sample of n models Mθ1 , . . .Mθn from the (continuous) set730

of possible realisations ∆, the probability that for at least a fraction R of the731

models in a further possibly infinite sequence of samplesM(2)
θ1
, . . .M(2)

θm
from732

∆ we have733

min
i
M(2)

θi
(x) ≥ min

i
Mθi(x) (1)

(respectively max
i
M(2)

θi
(x) ≤ max

i
Mθi(x))

31



is given by α = n ·
∫ 1

R
xn−1 dx = 1−Rn.734

Informally, Lemma 16 allows us to derive the minimum number n of735

realisations that it is enough to sample and check in order to guarantee736

that with probability α at least a fraction R of the models in ∆ satisfy737

the robustness property. More precisely, from these n realisations, we can738

obtain an underestimation of the reachable set of any realisation in ∆ that739

is guarantee to be correct with confidence α for at least a fraction R of a740

possibly infinite further sample of realisations from ∆. In practice, if we set,741

e.g. α = 0.999 and R = 0.995, we can derive n as n = logR(1 − α) = 1378.742

After having selected 1378 random realisations from ∆, if the lower bound of743

the underestimated reachable set computed as miniMθi(x
′) is greater than744

0.5, then with probability α = 0.999, R is a lower bound on the fraction745

of plausible model changes in ∆ for which x′ is robust. In other words,746

Lemma 16 allows us to assert with a confidence α that x′ is not ∆-robust for747

at most a fraction (1−R) = 0.05 of models from ∆.748

5.2. The AP∆S Algorithm749

Using the result of Lemma 16, we now present our approximation method750

AP∆S to generate probabilistic robustness guarantees. The procedure, shown751

in Algorithm 1, receives as input a model Mθ, a CFX x′ for which robust-752

ness guarantees are sought, and the two confidence parameters α,R. The753

algorithm then searches for the largest δmax such that, with probability α,754

the CFX x′ is robust for at least a fraction R of the set of plausible model755

changes ∆ = {S | dp(Mθ, S(Mθ)) ≤ δmax}.756

The algorithm starts by computing the size n of a sample of realisations757

that is sufficient to guarantee the condition in Lemma 16 (line 3). AP∆S then758

initializes a small δinit and checks if x′ is at least robust to a small model759

shift. To this end, it employs realisations(Mθ, x
′, δ, n) which samples n760

realisations, pertubating each model parameter by at most a factor δ and761

checks if for each of these realisation Mθi(x
′) ≥ 0.5, thus computing a ro-762

bustness rate. If not all these realisations result in a robust outcome, thus763

achieving a final rate not equal to 1, the algorithm discards the CFX x′ as764

non-robust (lines 6-8). Otherwise, it combines an exponential search (lines765

9-12) and a binary search (lines 13-24) to find δmax. At each step of this766

search, the procedure checks whether for each of the n realisations from767

∆ = {S | dp(Mθ, S(Mθ)) ≤ δmax} the conditionMθi(x
′) ≥ 0.5 is verified.768
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Algorithm 1 Approximate Plausible ∆-Shift (AP∆S)

1: Input: ModelMθ, set of PMC ∆, CFX x′, α, R, δinit
2: Output: δmax

3: n← logR(1− α) ▷ number of samples
4: rate ← realisations(Mθ, x

′, δinit, n)
5: if rate ̸= 1 then
6: return 0 ▷ not robust for δinit
7: end if

8: δ ← δinit
9: while rate = 1 do

10: δ ← 2δ
11: rate ← realisations(Mθ, x

′, δ, n)
12: end while

▷ we exit from the while because we have found at least one model in the
realisations with an output < 0.5, and we have [δ/2, δ) to search for a δmax.

13: δmax ← δ/2
14: while True do
15: if |δ − δmax| ≤ δinit then
16: return δmax

17: end if
18: δnew ← (δmax + δ)/2
19: rate ← realisations(Mθ, x

′, δnew, n)
20: if rate = 1 then
21: δmax ← δnew
22: else
23: δ ← δnew
24: end if
25: end while

Proposition 17. Fix δinit > 0. Given a model Mθ and a CFX x′, let δ∗ be769

the (exact) maximum magnitude of model changes such that x′ is robust with770

respect to the set of PMC ∆δ∗ = {S | dp(Mθ, S(Mθ)) ≤ δ∗}. Then, with771

probability α, AP∆S returns a δmax ≥ δ∗− δinit such that the CFX x′ is robust772

for at least a fraction R of the set of PMC ∆δmax . Moreover, the computation773

of δmax is polynomial.774

Proof sketch. The δmax returned by the algorithm is obtained by iteratively775

increasing δ, sampling nmodels from the corresponding ∆δ and verifying that776
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Mθi(x) ≥ 0.5 for each model Mθi sampled. By definition, δ∗ is the actual777

value we are trying to estimate. When the algorithm stops, with values δmax778

and δ such that δ − δmax ≤ δinit, we have that for n models in ∆δmax the779

CFX x′ is robust and for at least one model in ∆δ the x
′ is not robust. Since780

for each model in ∆δ∗ the CFX is robust, it must hold that δ > δ∗, hence781

δmax ≥ δ∗ − δinit.782

Once the exponential search ends, by exploiting Lemma 16, we can state783

that with probability α, the CFX x′ is robust for at least R of any infinite784

further realisations from ∆δmax . The time complexity of the algorithm cor-785

responds to n · m forward propagations, with n being the sample size and786

m = log δmax

δinit
being the number of iterations of the exponential search, which787

is polynomial in the input size of the problem.788

6. Experimental Analysis789

Section 5 laid the theoretical foundations of a novel sampling-based method790

that allows the obtaining of provable probabilistic guarantees on the robust-791

ness of CFXs. In this section, we evaluate our approach by considering five792

experiments:793

• In § 6.1 we show how to instantiate AP∆S in practice using a synthetic794

example. Specifically, we first demonstrate the interplay of parameters795

n, α, and R used to obtain a probabilistic guarantee. Then, using796

the maximum δmax discovered by AP∆S , we precisely characterize the797

subsets ∆̂ of the set of PMC ∆δmax for which the given CFX x′ cannot798

be proved to be robust. In our experiments at most a fraction (1−R)799

of ∆δmax is in ∆̂, so complementing empirically our theoretical results.800

• In § 6.2 we compare our certification approach with the one proposed801

in [12]. In particular, we focus on the difference between the worst-802

case guarantees offered by their approach and compare them with the803

average-case guarantees of AP∆S in terms of maximum changes that can804

be certified. These experiments confirm our intuition that worst-case805

guarantees might be too conservative in practice, leading to a larger806

number of CFXs being discarded.807

• In § 6.3, we consider the problem of generating robust CFXs and com-808

pare with two state-of-the-art approaches for robustness under PMC, [12]809
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and [11]. We show that our approach produces CFXs that are less ex-810

pensive (in terms of ℓ1 distance from the original input) and more811

plausible, without sacrificing robustness.812

• In § 6.4, we perform an in-depth analysis of the impact that the two813

main hyper-parameters of AP∆S , α and R, have on the quality of gener-814

ated CFXs. We show that higher values of there parameters typically815

lead to tighter estimates that result in improved robustness. These816

results also align with existing literature on CFXs in revealing that817

improved robustness appears to be correlated with higher plausibility818

and cost.819

• Finally, in § 6.5 we analyse the scalability of AP∆S . We consider820

tabular transformer architectures, such as TabNet [17] and show that821

AP∆S scales well even when employed in recent architectures employed822

at the state of the art and containing hundreds of thousands of param-823

eters, thus confirming the wide applicability of our method.824

An implementation of AP∆S is integrated in the RobustX library [43]825

available at https://github.com/RobustCounterfactualX/RobustX.git.826

Additional material is available at https://github.com/lmarza/APAS.827

6.1. AP∆S in Action828

This experiment is designed to demonstrate how the three main param-829

eters of AP∆S , i.e., n, α, and R, can be used to obtain probabilistic robust-830

ness guarantees. To this end, we focus on the synthetic example depicted in831

Fig. 11. Weights for the original networkMθ, as well as the input used for832

testing robustness, are generated randomly.833

x1 y

[−0.48,−0.25]

[−0.99,−0.76]

[−1.14,−0.91]

[0.69, 0.93]

Figure 11: The interval neural network used for exact enumeration.

Considering a random input x = −2.57, we use AP∆S to estimate a834

δmax for which we seek the guarantee that for at least R = 90% of the835

35

https://github.com/RobustCounterfactualX/RobustX.git
https://github.com/lmarza/APAS


Algorithm 2 Exact CFX ∆-Robustness

1: Input: An INN N and a CFX x′ and an maximum ϵ-precision for the splitting
phase

2: Output: set of INNs for which x′ is robust.

3: robust INNs ← ∅
4: non-robust INNs ← ∅
5: unknown ← Push(N )

6: while (unknown ̸= ∅) or (ϵ-precision not reached) do
7: I ← GetINNToVerify(unknown)
8: RI ← ComputeReachableSet(I, x′)
9: if lower(RI) ≥ 0.5 then

10: robust INNs ← Push(I)
11: unknown ← Pop(I)
12: else if upper(RI) < 0.5 then
13: non-robust INNs ← Push(I)
14: unknown ← Pop(I)
15: else
16: I ′, I ′′ ← ChooseIntervalToSplit(I)
17: unknown ← Push(I ′, I ′)
18: end if
19: end while
20: return robust INNs

plausible model changes induced by such δmax the CFX x′ is robust. Following836

Proposition 17, we set a confidence level α > 1−10−40 (i.e., with certainty, in837

practice), which yields n = 100k realisations. For this setting, AP∆S identifies838

a δmax = 0.115.839

To validate this result, we define a procedure to exactly characterize,840

following the intuitions of [44, 45], the models within ∆δmax for which the841

robustness property does not hold. The interval abstraction proposed by842

[12] can be used to exactly compute the portion of the model changes from843

∆ for which a CFX x′ is not robust. In fact, it is possible to build an interval844

neural network using the δmax value identified by AP∆S , setting each weight845

wi in θ to [wi − δmax, wi + δmax]. Then, recursively splitting each interval846

weight of the network in half allows to identify portions of ∆ that are not847

robust. Employing the following strategy (reported in Algorithm 2), after848

s = 7 splits, we obtain that for ∼ 92% of sub-interval networks, the CFX is849

robust. The remaining 8% produced an unknown answer (i.e., the situation850
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Table 2: Comparison on the robustness of CFXs using five state-of-the-art methods and
AP∆S proposed in this work.

Diabetes no2 SBA Credit

VM1 VM2 ℓ1 lof VM1 VM2 ℓ1 lof VM1 VM2 ℓ1 lof VM1 VM2 ℓ1 lof
δ = 0.11 δe = 0.27 δ = 0.02 δe = 0.07 δ = 0.11 δ = 0.25 δ = 0.05 δe = 1.28

Wacht-R 100% 100% 0.122 1.00 100% 100% 0.084 1.00 92% 92% 0.023 -0.78 - - - -

Proto-R 100% 96% 0.104 1.00 100% 100% 0.069 1.00 90% 88% 0.011 -0.02 32% 30% 0.300 -1.00

MILP-R 100% 100% 0.212 -0.48 100% 100% 0.059 1.00 100% 100% 0.018 -0.88 100% 100% 0.031 1.00

ROAR 82% 14% 0.078 0.95 88% 34% 0.074 1.00 82% 78% 0.031 -0.80 62% 60% 0.047 1.00

AP∆S 100% 100% 0.072 1.00 100% 100% 0.042 1.00 100% 100% 0.009 0.44 100% 94% 0.028 1.00

depicted in Fig. 10(b)) that would require further splits, corresponding to851

only ten nodes to explore in the next iteration. In the worst case, even852

considering all the remaining ten nodes left to explore as non-robust, we853

would have a maximum percentage of non-robustness still lower than the854

desired upper bound (1−R) = 10%, confirming that the guarantees produced855

by AP∆S indeed hold in practice.856

6.2. Worst-case vs Average-case Guarantees857

This set of experiments aims to compare the probabilistic guarantees858

offered by AP∆S with the worst-case guarantees offered by [12]. What we859

aim to show here is that adopting an average-case certification perspective860

may be more practical in some circumstances, as worst-case guarantees may861

be unnecessarily conservative. Our approach aims to obtain a δmax for which862

the CFX is robust with confidence α for at least a fraction R of model changes863

in ∆. This is in stark contrast with the worst-case reasoning of [12], where864

even a single realisation of ∆ for which the CFX is not robust results in the865

corresponding δ being discarded.866

To show why such strict guarantees may not be needed, we use an anal-867

ogous experimental setup and the training process of [12], which considers868

four datasets: Diabetes (continuous) [46], Credit (heterogeneous) [37], no2869

(continuous) [47] and Small Business Administration (SBA) (continuous fea-870

tures) [48]. In detail, for the training procedure of the classifier, we randomly871

shuffle each dataset and split it into two halves, denoted D1 and D2. First, we872

use D1 to train a base neural network; then we use both D1 and D2 to train873

a shifted model. We then generate 50 robust CFXs for the base network874

using the MILP-R and the same δ values as in [12] for a fair comparison.875
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Algorithm 3 Provable Plausible ∆-Shift

1: Input: ModelMθ, CFX x′, α, R
2: Output: δmax

3: δinit ← 0.0001
4: rate ← MILP(Mθ, x

′, δinit)
5: if rate ̸= 1 then
6: return 0 ▷ no robustness
7: end if

8: δ ← δinit
9: while rate = 1 do

10: δ ← 2δ
11: rate ← MILP(Mθ, x

′, δ)
12: end while
13: δmax ← δ/2
14: while True do
15: if |δ − δmax| ≤ δinit then
16: return δmax

17: end if
18: δnew ← (δmax + δ)/2
19: rate ← MILP(Mθ, x

′, δnew)
20: if rate = 1 then
21: δmax ← δnew
22: else
23: δ ← δnew
24: end if
25: end while

Specifically, we use δ = 0.11 for Diabetes, δ = 0.02 for no2, δ = 0.11 for SBA876

and δ = 0.05 for Credit. Subsequently, we evaluate the resulting CFXs by877

looking at two metrics: (i) VM1, the percentage of CFXs that are valid on878

the base neural network and (ii) VM2, the percentage of CFXs that remain879

valid for the shifted neural network trained using both D1 and D2. Table 2880

reports the results we obtained for this experiment.881

As previously observed by Jiang et al. [12], the training procedure used to882

generate shifted models may result in changes that exceed the δ used to gen-883

erate provably robust CFXs. Indeed, after inspecting the networks obtained,884

we noted that the maximum empirical difference observed after retraining885

(denoted as δe) is well above the δ values used during CFX generation. In886
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Figure 12: Average robust δ obtained using MILP-based certification and AP∆S .

particular, we recorded δe = 0.27 for Diabetes, δe = 0.07 for no2, δ = 0.25887

for SBA and δe = 1.28 for Credit. Given the magnitude of these changes,888

the robustness of the CFXs generated by MILP-R cannot be guaranteed in889

practice. However, the results show a rather intriguing picture: the VM2890

metric appears to be unaffected by retraining, and all CFXs remain valid on891

the respective final models.892

These results suggest that certification approaches based on worst-case893

reasoning may be too strict in practical scenarios. To further understand the894

implications of worst-case vs average-case reasoning, we adapted Algorithm 1895

to use the certification procedure of Jiang et al., i.e., a MILP solver instead896

of a sampled-based approach, and compute the maximum provable δ∗ for897

which the previously generated CFXs are robust (Algorithm 3).898

Fig. 12 shows a comparison between the average maximum provable δ899

obtained by this procedure and AP∆S . As we can observe, our average-case900

guarantees allow to obtain δ values that are much higher, exceeding the901

MILP-certified in all instances. This is expected, given the results discussed902

in Proposition 17. However, what remains unclear is how these differences903

may affect the cost and plausibility of CFXs when certification procedures904

are embedded in procedures to generate CFXs.905

6.3. Generating Robust CFXs using AP∆S906

The results discussed in the previous section have important implications907

on algorithms for the generation of robust CFXs. Recent works, e.g. [32, 12,908
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Algorithm 4 Generation of Robust CFXs

1: Input: ModelM, input x such thatM(x) = c, set of plausible model changes
∆, maximum iteration number τ

2: Output: ∆-robust CFX x′

3: t← 0 ▷ iteration number
4: while t < τ do
5: x′ ← ComputeCFX(x,M)
6: rate ← AP∆S (M, x′,∆)
7: if rate = 1 then
8: return x′ ▷ x′ is approx. ∆-robust
9: else

10: increase allowed distance of next CFX
11: increase iteration number t
12: end if
13: end while
14: return no robust CFX can be found

15], have proposed iterative procedures that generate provably robust CFXs909

by alternating two phases. First, a CFX is generated solving (variations910

of) Definition 1; then, a robustness certification procedure is invoked on911

the CFX. If the CFX is robust, then it is returned to the user; otherwise,912

the search continues, allowing for CFXs of increasing distance to be found.913

Clearly, the certification step has the potential to affect the CFXs computed914

in several ways. A robustness test that is too conservative may discard915

potentially good explanations and keep relaxing the distance constraint until916

the CFX is deemed robust. Ultimately, this may result in CFXs that exhibit917

poor proximity and plausibility.918

To test this hypothesis, we adapt the CFX generation algorithm of [12]919

and replace their ∆-robustness test with the one performed by AP∆S . The920

complete procedure is shown in Algorithm 4. In detail, after some initial-921

ization steps, we compute the first CFX using ComputeCFX(x,M) (line 5),922

which employs the solution proposed in [12] and presented above. Given a923

CFX x′ and a plausible model shift ∆, at line 6, we employ AP∆S setting924

α = 0.999 and R = 0.995, thus obtaining 1378 realisations to perform in925

the robustness test. If the CFX x′ returned by our approximation results926

robust for all these realisations, then we return it to the user. Otherwise, we927

increased the allowed distance for the next CFX generation and the iteration928
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number t (lines 10-11).929

We then compare the resulting procedure with the four generation algo-930

rithm studied in [12]: Wacht-R, Proto-R, MILP-R, and finally, ROAR [11].931

Notably, ROAR is specifically designed to generate robust CFXs under plau-932

sible model changes using average-case certification. Using the same datasets933

and training procedures of § 6.2, we generate 50 CFXs for each dataset. We934

evaluate CFXs based on their proximity, measured by the ℓ1 distance, and935

plausibility, measured by the local outlier factor (lof) which determines if936

an instance is within the data manifold by quantifying the local data den-937

sity [49] (+1 for inliers, −1 otherwise). We average ℓ1 and lof over the938

generated CFXs. We also report VM1 and VM2 for completeness. The939

results obtained, which we report in Table 2, confirm our hypothesis. In-940

deed, AP∆S produces the best results across all datasets, always generating941

CFXs with high plausibility and better proximity. Notably, AP∆S outper-942

forms ROAR as well, producing CFXs that retain a higher degree of validity943

after retraining.944

6.4. Impact of hyper-parameters on validity, plausibility and cost945

The previous set of experiments demonstrated that AP∆S is able to out-946

perform existing approaches and generate CFXs that are robust, but also947

plausible and less expensive than other robust approaches. What remains948

unclear is the role that the main hyper-parameters of our algorithm, α and949

R, might play in obtaining these results. We therefore conducted additional950

experiments to evaluate the interplay between the tightness of the probabilis-951

tic guarantees offered by AP∆S and the quality of resulting explanations. In952

particular, focusing on the same datasets used in previous experiments, we953

started by checking the influence that α and R have on the validity of CFXs954

after retraining. We generated 50 CFXs for each dataset using an instantia-955

tion of Algorithm 4 that uses MILP encodings to generate candidate CFXs956

as done in [12]. Figures 13-16 report the results obtained for the Diabetes957

and SBA datasets. Additional results for the two remaining datasets are958

reported in the appendix for this first set of experiments.959

Our intuition is that lower values for α and R should result in coarser960

robustness guarantees (i.e., larger δ values) and, thus, lower validity rates.961

As we can observe, our intuition is confirmed across all datasets, further962

clarifying the nature of the probabilistic guarantees that AP∆S can offer.963

Next, we investigate the impact that α and R have on the plausibility and964

cost of CFXs generated by AP∆S . As per our previous experiments, we965
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Figure 13: Mean validity after retraining visualised for increasing α, R values using the
Diabetes dataset.
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Figure 14: Mean certifiable δ obtained for increasing α, R values using the Diabetes
dataset.

measure plausibility using the LOF score, and we use ℓ0, ℓ1 and ℓ∞ norms to966

measure the proximity of CFXs. For conciseness, we only report results for967

the Diabetes dataset in Figure 17 below and delegate additional results to the968

appendix. To improve the readability of our results, we decided to separate969

CFXs that achieved 100% validity after retraining for the rest. Overall we970

can observe a clear trend, whereby increasing α, R results in CFXs that are971

further away from the decision boundary and thus more plausible. These972
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Figure 15: Mean validity after retraining visualised for increasing α, R values using the
SBA dataset.
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Figure 16: Mean certifiable δ obtained for increasing α, R values using the SBA dataset.

results are in line with observations made in other works on robustness to973

model changes, where it has been suggested that increasing cost improves974

the robustness and plausibility of CFXs [11, 29, 10].975

6.5. Scalability analysis of AP∆S976

In this section we demonstrate that AP∆S is able to scale to state-of-977

the-art architectures used for tabular data, thus providing further empirical978

evidence of the practical viability of our approach. More specifically, we979
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Figure 17: Mean LOF, ℓ0, ℓ1, ℓ∞ metrics for increasing α, R values using the Diabetes
dataset. CFXs with 100% validity after retraining are shown on the right, while the
remaining CFXs are shown on the left.
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focus on TabNet [17], a tabular transformer recently introduced that lever-980

ages sparse attention and sequential feature selection to learn interpretable981

feature representations. At its core, TabNet processes data in a series of de-982

cision steps, with each step using a learned attention mask to select a subset983

of features, which allows the model to focus on the most relevant attributes984

at each stage. This sparse attention mechanism makes TabNet computation-985

ally efficient and helps to improve interpretability in tabular datasets. From986

our perspective, this architecture is interesting as it comprises an attention987

mechanism, with encoder-decoder components typical of other recent trans-988

former architectures and a consequent significant number of parameters to989

test the scalability of AP∆S . To the best of our knowledge, this is the first990

time that CFXs with robustness guarantees are generated for such a complex991

architecture with tens of thousands of parameters.992

Before considering the robustness property, we analyse the accuracy in993

the training and testing phases of TabNet. To this end, we employ a su-994

pervised training approach, splitting the datasets employed in the previous995

evaluation, namely Diabetes, No2, SBA and Credit, into training and testing996

datasets, and we first compare the accuracy obtained using this architecture997

with standard MLPs employed in § 6.2. To ensure statistical significance of998

our results, we consider, for each dataset tested, the mean of the accuracies999

obtained using ten random initializations of the transformer architecture.As1000

highlighted in the first two columns of Tab. 3, with TabNet, we have an1001

increased number of parameters in the model but similar or even higher ac-1002

curacy with respect to the classical MLP, confirming the potential of this1003

novel architecture in selecting important features to get more precise final1004

accuracy in the prediction.1005

As our results show a similar level of accuracy between MLP and TabNet,1006

we move on to how to generate robust CFXs for this transformer architecture.1007

Given the significantly higher number of parameters in TabNet, we replace1008

the MILP-based procedure used in Section 6.3, Algorithm 4 with a Nearest1009

Neighbors Counterfactual Explainer (NNCFX) [40] to ensure scalability of1010

our generation procedure. More specifically, line 5 in Algorithm 4 (reported1011

in the appendix) now implements the following strategy. Given an input x for1012

which a robust CFX is sought, we identify the nearest data point belonging1013

to the dataset for which TabNet produces a different classification outcome.1014

Our implementation uses k-d trees to improve the efficiency of this nearest-1015

45



Table 3: Scalability experiments of AP∆S .

Diabetes

# Parameters Mean Accuracy Mean δmax Mean Comp. Time

MLP 81 79% 0.32 0.01s

TabNet 30992 82% 0.48 5.21s

no2

# Parameters Mean Accuracy Mean δmax Mean Comp. Time

MLP 145 64% 0.11 0.008s

TabNet 30676 68% 0.35 9.2s

SBA

# Parameters Mean Accuracy Mean δmax Mean Comp. Time

MLP 199 99% 0.53 0.02s

TabNet 30992 100% 0.16 10.3s

Credit

# Parameters Mean Accuracy Mean δmax Mean Comp. Time

MLP 371 74% 0.34 0.01s

TabNet 40946 74% 1.8 11.3s

neighbor search.51016

For the following experiments, we consider the same datasets used in Sec-1017

tion 6.3 and the same 50 original inputs employed in those experiments. The1018

last two columns of Table 3 report the results we obtained when generating1019

CFX with robustness guarantees for TabNet. As we can observe, AP∆S is still1020

able to compute robust CFXs within tens of seconds, even when employed1021

in transformer-based architecture with ∼ 400x times parameters, showing1022

a linear growth time computation. Similar runtimes are observed across all1023

four datasets, thus confirming the high scalability of our approach. To fur-1024

ther confirm this aspect, we ran an in-depth scalability study by training a1025

5We perform a further experiment reported in the Appendix B to understand the
difference between the two CFX-generation approaches, namely MILP and NNCFX.
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Figure 18: Mean computation time of AP∆S applied to TabNet architectures with increas-
ing number of parameters.

set of 4 TabNet models with an increasing number of parameters. Using the1026

diabetes dataset, we trained models containing [30834, 40946, 62578, 126066]1027

respectively and generated 50 robust CFXs for each. We stored the runtimes1028

for each robust CFX and report the mean computation time for each model1029

in Figure 18. As we can observe, the runtime increase follows a linear trend,1030

thus highlighting the effectiveness and applicability of our proposed solution1031

even when targetting complex architectures.1032

7. Conclusions1033

We studied the problem of generating robust CFXs with respect to plausi-1034

ble model changes. We proved for the first time that certifying the robustness1035

of CFX with respect to this notion of robustness is an NP-hard problem, and1036

also extended this result to show that the same complexity results apply to1037

naturally-occurring model changes. These results motivate the quest for new1038

scalable algorithms to certify robustness under plausible model changes. To1039

this end, we investigated existing methods to generate robust CFXs with1040

probabilistic guarantees and showed that these approaches may not be di-1041

rectly applicable to our setting. We then introduced AP∆S , a novel scalable1042
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approach for probabilistic robustness certification, and used it to generate1043

robust CFXs under plausible model changes. We carried out an extensive1044

experimental analysis, demonstrating the advantages of AP∆S and outper-1045

forming SOTA methods on a range of metrics, including validity, plausibility,1046

and cost. Crucially, we also applied our method to certify CFXs’ robustness1047

for tabular transformers containing thousands of parameters. To the best1048

of our knowledge, we are the first to consider models of this size within the1049

robust CFX literature [10], further demonstrating the scalability and wide1050

applicability of our approach. We see these outcomes as important contribu-1051

tions towards complementing existing formal approaches for Explainable AI1052

and making them applicable in practice.1053
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Appendix A. Additional results on Credit and No2 datasets for1230

§ 6.4 experiments.1231
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Figure A.19: Mean validity after retraining visualised for increasing α, R values using the
Credit dataset.
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Figure A.21: Mean LOF, ℓ0, ℓ1, ℓ∞ metrics for increasing α, R values using the Credit
dataset. CFXs never reach 100% validity after retraining on this dataset.
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Figure A.22: Mean validity after retraining visualised for increasing α, R values using the
No2 dataset.
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Figure A.23: Mean certifiable δ obtained for increasing α, R values using the No2 dataset.
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Figure A.24: Mean LOF, ℓ0, ℓ1, ℓ∞ metrics for increasing α, R values using the Credit
dataset. CFXs always obtain 100% validity after retraining on this dataset.
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Appendix B. Comparison of two CFXs generation approaches of1234

§ 6.5 experiments.1235

As stated in § 6.5 in the main paper, given the significantly higher num-1236

ber of parameters in TabNet, we replace the MILP-based procedure used in1237

Section 6.3, Algorithm 4 with a Nearest Neighbors Counterfactual Explainer1238

(NNCFX) [40] to ensure scalability of our generation procedure. More specif-1239

ically, line 5 in Algorithm 4 now implements the following strategy.1240

Algorithm 5 Nearest Neighbors Counterfactual Explanation

1: Input: Dataset d, a k-d tree built from dataset features, x set of original
inputs, y set of original outcomes

2: Output: x’ set of nearest counterfactual explanation.

3: x’ ← ∅
4: for i in len(x) do
5: x← x[i] ▷ original input
6: y ← y[i] ▷ original output
7: y′ ← 1− y ▷ desired outcome
8: idx, distance← k-d tree.query(x, len(features)) ▷ already sorted per

distance
9: if d[idx][′outcome′] == y′ then

10: x’← d[idx]
11: else
12: x’← None
13: end if
14: end for
15: return x’

This function iteratively searches for a neighboring data point with the1241

opposite outcome by evaluating distances between features and selecting the1242

nearest as possible. Clearly, this approach and the one of [12] can produce1243

different explanations. We perform a further experiment to understand the1244

difference between the two CFX-generation approaches. Hence, we consider1245

the same datasets used in Section 6.3 and the same 50 original inputs em-1246

ployed in those experiments. In the NNCFX approach, once a valid coun-1247

terfactual is found, the mean feature-wise distance between the identified1248

counterfactual and the MILP-generated counterfactual is calculated. This1249

distance serves as a measure of similarity between the counterfactuals identi-1250

fied by the TabNet-based approach and those obtained via MILP in an MLP1251
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setting. Our results are reported in Fig. B.25. On the x-axis, we report the1252

index of CFX, while on the y-axis, the mean and standard deviation distance1253

between our CFX and the one generated with MILP in each dataset.1254
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Figure B.25: Mean and standard deviation distance between CFXs generated with NNCFX
and MILP in Diabetes, Credit, SBA, no2 datasets.

As we can notice, since the values in the datasets are typically normalized1255

in a range [0, 1], the CFXs generated with the two approaches are consistently1256

close. In fact, there is a mean feature distance between the CFX generated1257

with NNCFX and MILP of ∼ 0.12 for the 50 inputs selected. This result1258

shows the correctness and efficiency of the NNCFX generation approach in1259

the transformers-based setting.1260
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